FAIRCHILD

SEMICONDUCTOR

74LVX125 Low Voltage Quad Buffer with 3-STATE Outputs

General Description

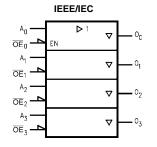
Features

on-inverting buff- Input voltage level translation from 5V to 3V

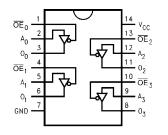
The LVX125 contains four independent non-inverting buffers with 3-STATE outputs. The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

- Ideal for low power/low noise 3.3V applications
 Guaranteed simultaneous switching noise level and
 - dynamic threshold performance

February 1994


Revised March 1999

Ordering Code:


Order Number	Package Number	Package Description					
74LVX125M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow					
74LVX125SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74LVX125MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.							

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Logic Symbol

Connection Diagram

Truth Table

Pin Descriptions

Pin Names	Description
A _n	Inputs
OEn	Output Enable Inputs
O _n	Outputs

Inp	Output	
OEn	An	On
L	L	L
L	Н	н
н	х	Z

H = HIGH Voltage Level

L = LOW Voltage Level Z = High Impedance X = Immaterial

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Input Diode Current	-0.5V to +7.0V
$(I_{\rm IK})$ V _I = -0.5V	–20 mA
DC Input Voltage (VI)	-0.5V to +7.0V
DC Output Diode Current (I _{OK})	
$V_{O} = 0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
Output Voltage (V _O)	–0.5V to V_{CC} + 0.5V
DC Output Source/Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}		$T_A = 25^{\circ}C$		$T_A = -40^\circ$	C to +85°C	Units	Conc	litions
Symbol		(V)	Min	Тур	Max	Min	Max	onita	Conc	inions
VIH	HIGH Level	2.0	1.5			1.5				
	Input Voltage	3.0	2.0			2.0		V		
		3.6	2.4			2.4				
VIL	LOW Level	2.0			0.5		0.5			
	Input Voltage	3.0			0.8		0.8	V		
		3.6			0.8		0.8			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL}$ or	$I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V	VIH	$I_{OH} = -50 \ \mu A$
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL}$ or	$I_{OL} = 50 \ \mu A$
	Output Voltage	3.0		0.0	0.1		0.1	V	VIH	$I_{OL} = 50 \ \mu A$
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$
I _{OZ}	3-STATE Output	3.6			±0.25		±2.5	μA	$V_{IN} = V_{IH}$ or V_{IL}	
	Off-State Current								$V_{OUT} = V_{CC} \text{ or } GND$	
I _{IN}	Input Leakage	3.6			±0.1		±1.0	μA	$V_{IN} = 5.5V$ or G	IND
	Current									
I _{CC}	Quiescent Supply	3.6			4.0	1	40.0	μA	$V_{IN} = V_{CC}$ or G	ND
	Current									

Noise Characteristics (Note 3)

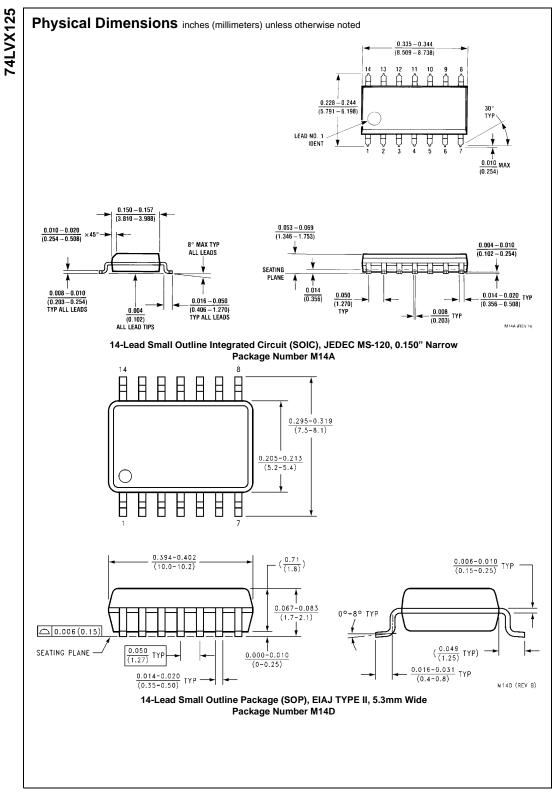
Symbol	Parameter	V _{CC} (V)	$T_A = 25^{\circ}C$		Units	C _L (pF)	
			Тур	Limit			
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.3	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.3	-0.8	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

Note 3: Input $t_r = t_f = 3 \text{ ns}$

www.fairchildsemi.com

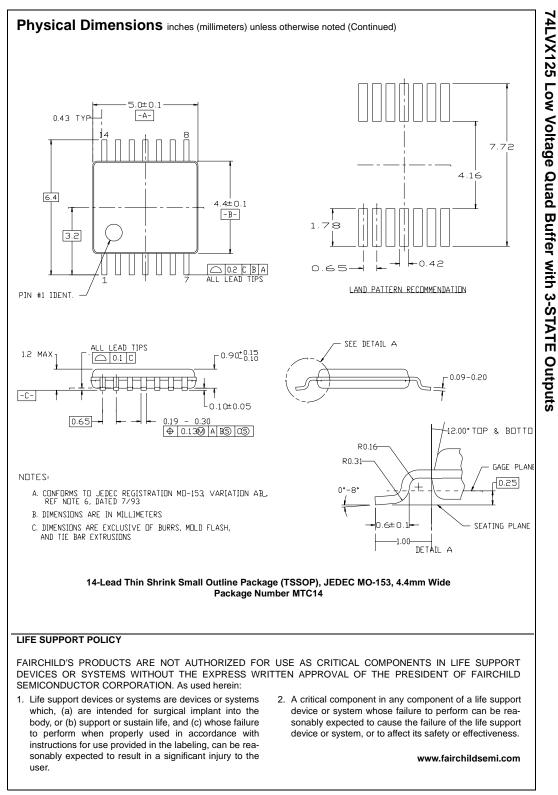
Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions
	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay Time	2.7		5.8	10.1	1.0	13.5		C _L = 15 pF
t _{PHL}	Data to Output			8.3	13.6	1.0	17.0	ns	C _L = 50 pF
		3.3 ± 0.3		4.4	6.2	1.0	8.5	115	C _L = 15 pF
				6.9	9.7	1.0	12.0		$C_L = 50 \text{ pF}$
t _{PZH}	Output Enable Time	2.7		5.3	9.3	1.0	12.5		$C_L = 15 \text{ pF}, R_L = 1 k\Omega$
t _{PZL}				7.8	12.8	1.0	16.0	ns	$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
		3.3 ± 0.3		4.0	5.6	1.0	7.5	115	$C_L = 15 \text{ pF}, R_L = 1 k\Omega$
				6.5	9.1	1.0	11.0		$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
t _{PHZ}	Output Disable	2.7		10.0	15.7	1.0	19.0		$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
t _{PLZ}	Time	3.3 ± 0.3		8.3	11.2	1.0	13.0	ns	$C_L = 50 \text{ pF}, \text{ R}_L = 1 k\Omega$
t _{OSHL}	Output to Output	2.7			1.5		1.5	-	C _L = 50 pF
t _{OSLH}	Skew (Note 4)	3.3			1.5		1.5	ns	

Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PHLn}|$


Capacitance

Symbol	Parameter		$\boldsymbol{T_A=25^\circ C}$		$T_A = -40^{\circ}C$	Units				
	i arameter	Min	Тур	Max	Min	Max	onita			
CIN	Input Capacitance		4.0	10		10	pF			
C _{PD}	Power Dissipation		14				pF			
	Capacitance (Note 5)									
Note 5: C	Note 5: Consistering outputs of the internal equivalent capacitance which is calculated from the operating current consumption without load									

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{4 \text{ (per bit)}}$

www.fairchildsemi.com

www.fairchildsemi.com

4

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.