
INTEGRATED CIRCUITS

Product specification Supersedes data of 1994 May 16 IC23 Data Handbook 1998 Feb 19

74LVT240

3.3V Octal inverting buffer (3-State)

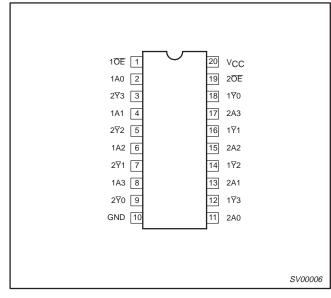
FEATURES

- Octal bus interface
- 3-State buffers
- Output capability: +64mA/-32mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Power-up 3-State
- Live insertion/extraction permitted
- No bus current loading when output is tied to 5V bus
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model.

QUICK REFERENCE DATA

DESCRIPTION

The LVT240 is a high-performance BiCMOS product designed for V_{CC} operation at 3.3V.

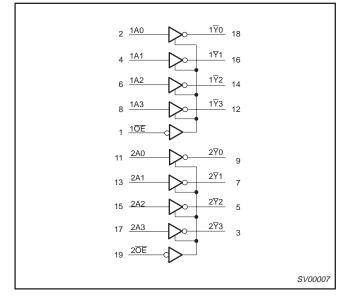

This device is an octal inverting buffer that is ideal for driving bus lines. The device features two Output Enables $(1\overline{OE}, 2\overline{OE})$, each controlling four of the 3-State outputs.

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nYx	$C_L = 50 pF;$ $V_{CC} = 3.3 V$	2.5 2.6	ns
C _{IN}	Input capacitance	$V_I = 0V \text{ or } 3.0V$	4	pF
C _{OUT}	Output capacitance	Outputs disabled; $V_O = 0V \text{ or } 3.0V$	8	pF
I _{CCZ}	Total supply current	Outputs disabled; $V_{CC} = 3.6V$	0.12	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
20-Pin Plastic SOL	-40°C to +85°C	74LVT240 D	74LVT240 D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +85°C	74LVT240 DB	74LVT240 DB	SOT339-1
20-Pin Plastic TSSOP Type I	-40°C to +85°C	74LVT240 PW	74LVT240PW DH	SOT360-1

PIN CONFIGURATION



PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 4, 6, 8	1A0 – 1A3	Data inputs
11, 13, 15, 17	2A0 – 2A3	Data inputs
18, 16, 14, 12	1 <u>7</u> 0 – 1 <u>7</u> 3	Data outputs
9, 7, 5, 3	2 <u>7</u> 0 – 2 <u>7</u> 3	Data outputs
1, 19	1 <u>0E</u> , 2 <u>0E</u>	Output enables
10	GND	Ground (0V)
20	V _{CC}	Positive supply voltage

74LVT240

LOGIC SYMBOL

FUNCTION TABLE

INP	JTS	OUTPUTS
nOE	nAx	nYx
L	L	Н
L	Н	L
Н	X	Z

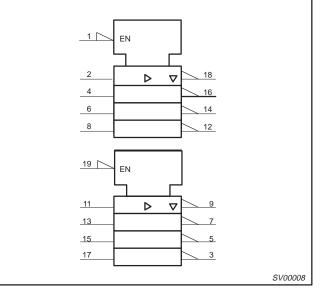
H = High voltage level L = Low voltage level

X = Don't care

Z = High impedance "Off" state

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	PARAMETER CONDITIONS			
V _{CC}	DC supply voltage		-0.5 to +4.6	V	
VI	DC input voltage ³		-0.5 to +7.0	V	
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V	
		Output in Low state	128		
lout	DC output current	Output in High state	-64	mA	
I _{IK}	DC input diode current	V ₁ < 0	-50	mA	
Ι _{ΟΚ}	DC output diode current	V _O < 0	-50	mA	
T _{stg}	Storage temperature range		-65 to 150	°C	


NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

LOGIC SYMBOL (IEEE/IEC)

74LVT240

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWIDOL	FARAMETER	MIN	MAX	
V _{CC}	DC supply voltage	2.7	3.6	V
VI	Input voltage	0	5.5	V
VIH	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{ОН}	High-level output current		-32	mA
le.	Low-level output current		32	mA
IOL	Low-level output current; current duty cycle \leq 50%; f \geq 1kHz		64	
$\Delta t/\Delta v$	Input transition rise or fall rate; outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

					LIMITS		
SYMBOL PARAMETER		TEST CONDITIONS	T _{amb} =	UNIT			
				MIN	TYP ¹	MAX	1
VIK	Input clamp voltage	V _{CC} = 2.7V; I _I = -18mA			0.9	-1.2	V
		$V_{CC} = 2.7$ to 3.6V; $I_{OH} = -100\mu A$		V _{CC} -0.2	V _{CC} -0.1		V
V _{OH}	High-level output voltage	V _{CC} = 2.7V; I _{OH} = -8mA		2.4	2.5		V
		V _{CC} = 3V; I _{OH} = -32mA		2	2.2		V
		V _{CC} = 2.7V; I _{OL} = 100µA			0.1	0.2	
		V _{CC} = 2.7V; I _{OL} = 24mA		1	0.3	0.5	1
V _{OL}	Low-level output voltage	V _{CC} = 3V; I _{OL} = 16mA			0.25	0.4	V
		V _{CC} = 3V; I _{OL} = 32mA			0.3	0.5	1
		V _{CC} = 3V; I _{OL} = 64mA			0.4	0.55	1
		V _{CC} = 0 or 3.6V; V _I = 5.5V			1	10	
	Input leakage current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or } GND$	Control pins		±0.1	±1	
1	input leakage current	$V_{CC} = 3.6V$ $V_{L} = V_{CC}$			0.1	1	μA
		$V_{CC} = 3.6V; V_1 = 0$	Data pins ⁴		-1	-5	1
I _{OFF}	Output off current	$V_{CC} = 0V; V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5V$			1	±100	μΑ
	Due Hald summer 1.4	$V_{CC} = 3V; V_I = 0.8V$		75	150		
I _{HOLD}	Bus Hold current A inputs ^{NO TAG}	$V_{CC} = 3V; V_{I} = 2.0V$		-75	-150		μA
		$V_{CC} = 0V \text{ to } 3.6V; V_{CC} = 3.6V$		±500			
I_{EX}	Current into an output in the High state when $V_O > V_{CC}$	$V_{O} = 5.5V; V_{CC} = 3.0V$			60	125	μA
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} = \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = 0$ OE/OE = Don't care	GND or V _{CC} ;		±1	±100	μΑ
I _{OZH}	3-State output High current	V _{CC} = 3.6V; V _O = 3.0V			1	5	μΑ
I _{OZL}	3-State output Low current	$V_{CC} = 3.6V; V_{O} = 0.5V$			-1	-5	μΑ
ICCH		V_{CC} = 3.6V; Outputs High, V_{I} = GND o	r V _{CC} , I _{O =} 0	1	0.12	0.19	
I _{CCL}	Quiescent supply current	$V_{CC} = 3.6V$; Outputs Low, $V_I = GND$ or	· V _{CC} , I _{O =} 0		3	12	mA
I _{CCZ}	1	$V_{CC} = 3.6V$; Outputs Disabled; $V_{I} = GN_{ONO TAG}$		0.12	0.19	1	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 3.0 to 3.6V; One input at V_{CC} -0 Other inputs at V_{CC} or GND	.6V;		0.1	0.2	mA

NOTES:

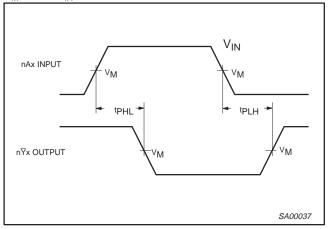
All typical values are at T_{amb} = 25°C.
This is the increase in supply current for each input at V_{CC} –0.6V.
This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = 3.3V ± 10% a transition time of 100µsec is permitted. This parameter is valid for T_{amb} = 25°C, only.
Unused pins at V_{CC} or GND

I_{CCZ} is measured with outputs pulled to V_{CC} or GND.
This is the bus hold overdrive current required to force the input to the opposite logic state.

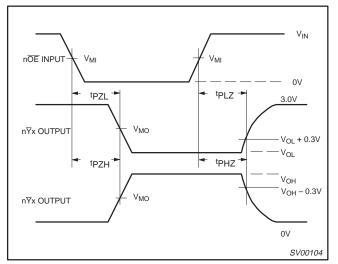
74LVT240

AC CHARACTERISTICS

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

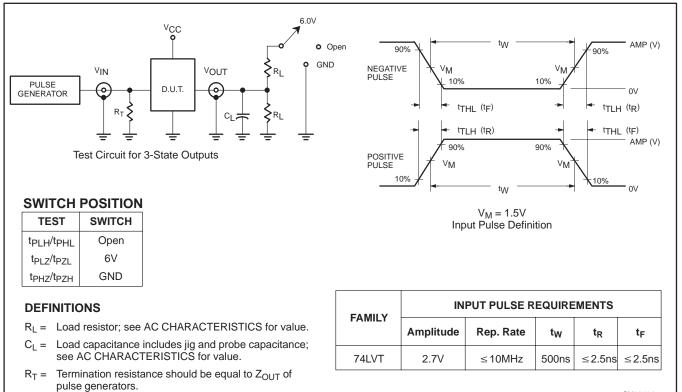

				L	IMITS		
SYMBOL	PARAMETER	WAVEFORM	T _{amb} V _C	= -40°C to + _C = +3.3V ±0.	85°C 3V	V _{CC} = 2.7V	UNIT
			MIN	TYP ¹	MAX	МАХ	1
t _{PLH} t _{PHL}	Propagation delay nAx to nYx	1	1 1	2.5 2.5	4.3 4.3	5.2 5.0	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1 1	3.7 3.1	5.2 5.2	6.3 6.7	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	2	2 1.6	3.4 3.2	5.6 5.1	6.3 5.6	ns

NOTE:

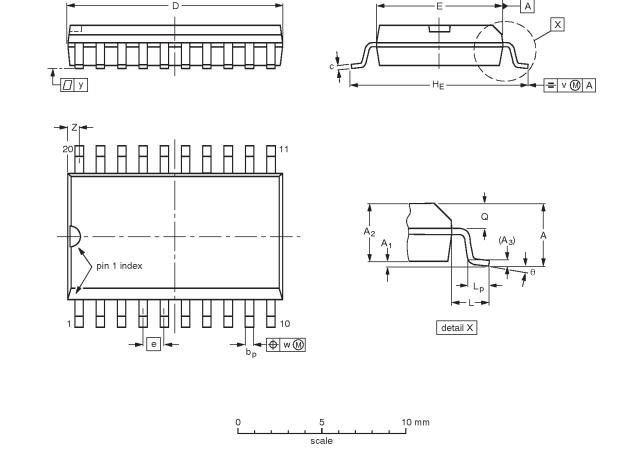

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC WAVEFORMS

 V_{M} = 1.5V, V_{IN} = GND to 2.7V



Waveform 1. Input (nAx) to Output (n $\overline{Y}x$) Propagation Delays

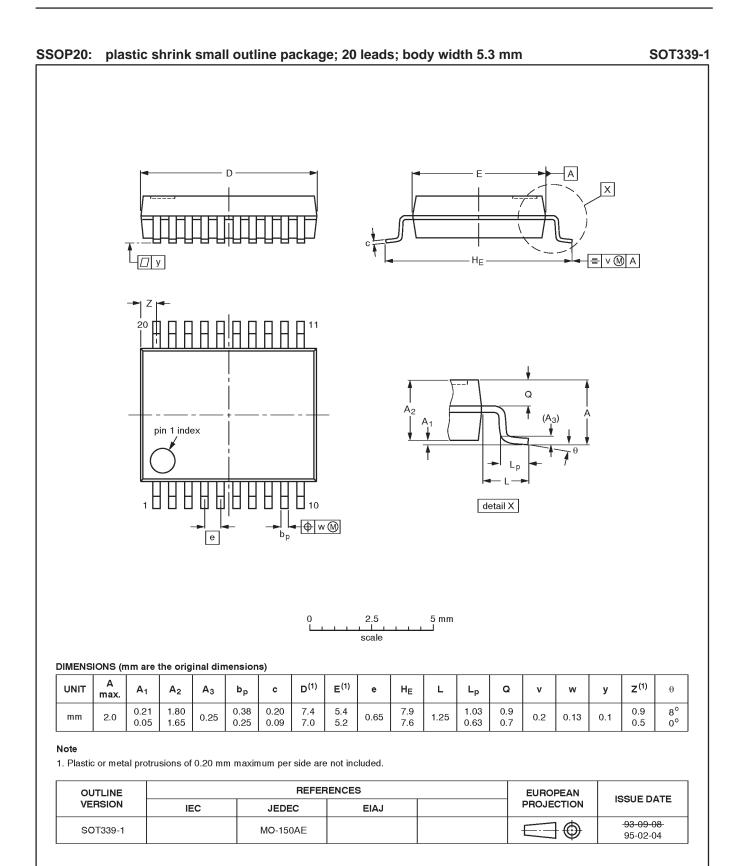


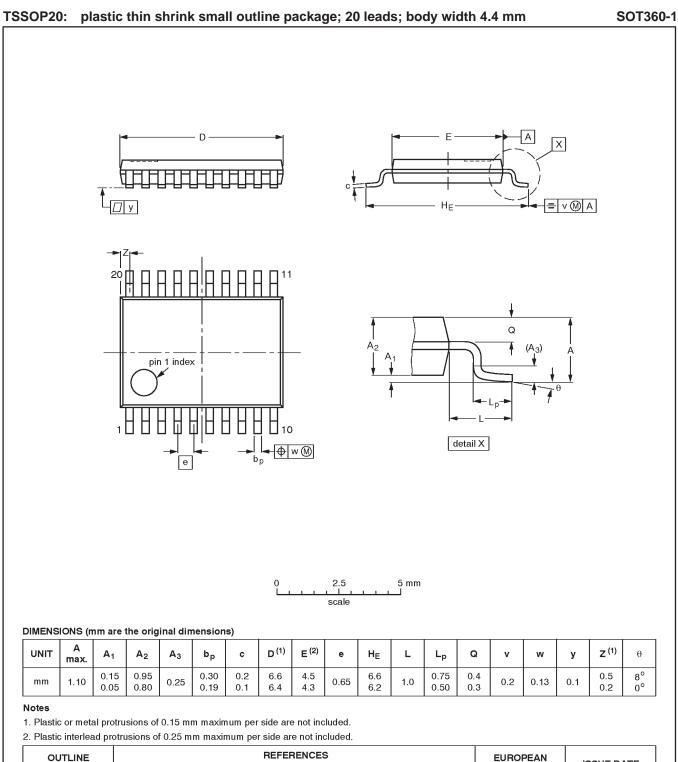
Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORMS

plastic small outline package; 20 leads; body width 7.5 mm SO20:

DIMENSIONS (inch dimensions are derived from the original mm dimensions)


UNIT	A max.	A ₁	A ₂	A ₃	b _р	с	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	У	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8 ⁰
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.42 0.39	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°


Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013AC			-92-11-17 95-01-24

SOT163-1

74LVT240

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-03806

Let's make things better.

PHILIPS

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.