
- Qualification in Accordance With AEC-Q100†
- Qualified for Automotive Applications
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 9.5 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Partial-Power-Down-Mode Operation

- Dual 4-Bit Binary Counters With Individual Clocks
- Direct Clear for Each 4-Bit Counter
- Can Significantly Improve System
 Densities by Reducing Counter Package
 Count by 50 Percent

description/ordering information

The SN74LV393A contains eight flip-flops and additional gating to implement two individual 4-bit counters in a single package. This device is designed for 2-V to 5.5-V V_{CC} operation.

This device comprises two independent 4-bit binary counters, each having a clear (CLR) and a clock (CLK) input. The device changes state on the negative-going transition of the CLK pulse. N-bit binary counters can be implemented with each package, providing the capability of divide by 256. The SN74LV393A has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system timing signals.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

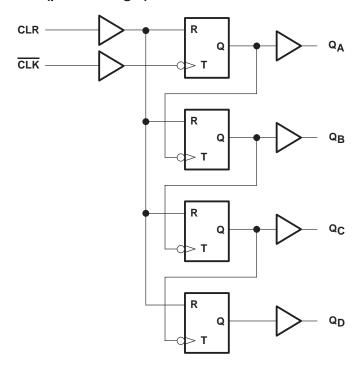
ORDERING INFORMATION

TA	PACK	PACKAGE‡ - PW Tape and reel	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 105°C	TSSOP - PW	Tape and reel	SN74LV393ATPWRQ1	LV393AT

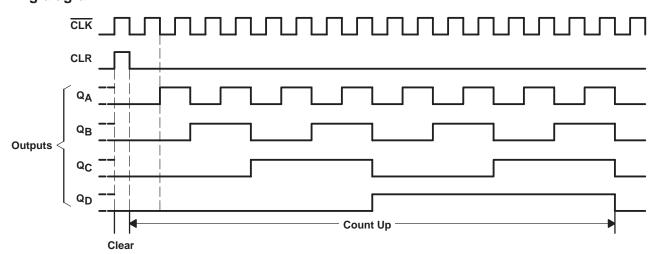
[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design quidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INP	UTS	FUNCTION				
CLK	CLR	FUNCTION				
↑	L	No change				
\downarrow	L	Advance to next stage				
X	Н	All outputs L				



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



[†] Contact factory for details. Q100 qualification data available on request.

logic diagram, each counter (positive logic)

timing diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Output voltage range applied in high or low state, VO (see Notes 1 and 2)) –0.5 V to V _{CC} + 0.5 V
Output voltage range applied in power-off state, VO (see Note 1)	
Input clamp current, $I_{ K }(V_{ I } < 0)$	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 3)	113°C/W
Storage temperature range, T _{stq}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 7 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
V	High level inner college	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	V _{CC} ×0.7		V
V_{IH}	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	V _{CC} ×0.7		V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	V _{CC} ×0.7		
		V _{CC} = 2 V		0.5	
.,	Law law Paratasitana	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$	V
V_{IL}	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		$V_{CC} \times 0.3$	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		V _{CC} ×0.3	
٧ı	Input voltage	•	0	5.5	V
٧o	Output voltage		0	VCC	V
		V _{CC} = 2 V		-50	μΑ
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-2	
ЮН	High-level output current	V _{CC} = 3 V to 3.6 V		-6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-12	
		V _{CC} = 2 V		50	μΑ
	Law law band admid arrest	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2	
IOL	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		12	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		200	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	
		V _{CC} = 4.5 V to 5.5 V		20	
TA	Operating free-air temperature	•	-40	105	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		VCC	MIN	TYP	MAX	UNIT			
	$I_{OH} = -50 \mu\text{A}$		2 V to 5.5 V	V _{CC} -0.1						
,,	$I_{OH} = -2 \text{ mA}$		2.3 V	2			.,			
VOH	I _{OH} = -6 mA		3 V	2.48			V			
	I _{OH} = −12 mA		4.5 V	3.8						
	$I_{OL} = 50 \mu\text{A}$		2 V to 5.5 V			0.1				
\/-·	I _{OL} = 2 mA		2.3 V			0.4	V			
V_{OL}	I _{OL} = 6 mA		3 V			0.44	V			
	I _{OL} = 12 mA		4.5 V			0.55				
lį	$V_I = 5.5 \text{ V or GND}$		0 to 5.5 V			±1	μΑ			
ICC	$V_I = V_{CC}$ or GND,	IO = 0	5.5 V			20	μΑ			
l _{off}	V_I or $V_O = 0$ to 5.5 V		0			5	μΑ			
Ci	$V_I = V_{CC}$ or GND		3.3 V		1.8		pF			

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		MIN	MAY	LINUT	
			MIN	MAX	IVIIIN	MAX	UNIT
	Pulse duration	CLK high or low	5		5		
t _W		CLR high	5		5		ns
t _{su}	Setup time	CLR inactive before CLK↓	6		6		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		MIN	MAX	LINUT	
			MIN	MAX	IVIIIN	IVIAA	UNIT
	Pulse duration	CLK high or low	5		5		
t _W		CLR high	5		5		ns
t _{su}	Setup time	CLR inactive before CLK↓	5		5		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		$T_A = 2$	25°C	BAINI	BAAV	UNIT	
			MIN	MAX	MIN	MAX	UNII
	Pulse duration	CLK high or low	5		5		
t _W		CLR high	5		5		ns
t _{su}	Setup time	CLR inactive before CLK↓	4		4		ns

SN74LV393A-Q1 DUAL 4-BIT BINARY COUNTER

SCLS515B - JULY 2003 - REVISED MAY 2004

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DADAMETER	FROM	то	LOAD	T,	Վ = 25°C	;	MIN	MAX	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN		UNIT
f _{max}			C _L = 50 pF	30	70		25		MHz
		Q _A			9.3	21.3	1	24.5	
_	0117	Q _B			10.9	23.9	1	27.5	
^t pd	CLK	QC	$C_L = 50 pF$		12.3	26.1	1	30	ns
	•	QD			13.4	27.8	1	32	
^t PHL	CLR	Qn	1		9.1	17.4	1	20	

switching characteristics over recommended operation free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD		MIN	BAAV	LINUT		
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	IVIIN	MAX	UNIT
f _{max}			C _L = 50 pF	45	105		35		MHz
		Q _A			6.7	16.7	1	19	
		QB]		7.8	19.3	1	22	
^t pd	CLK	QC	$C_L = 50 pF$		8.7	21.5	1	24.5	ns
		QD]		9.5	23.2	1	26.5	
^t PHL	CLR	Q _n			6.8	15.8	1	18	

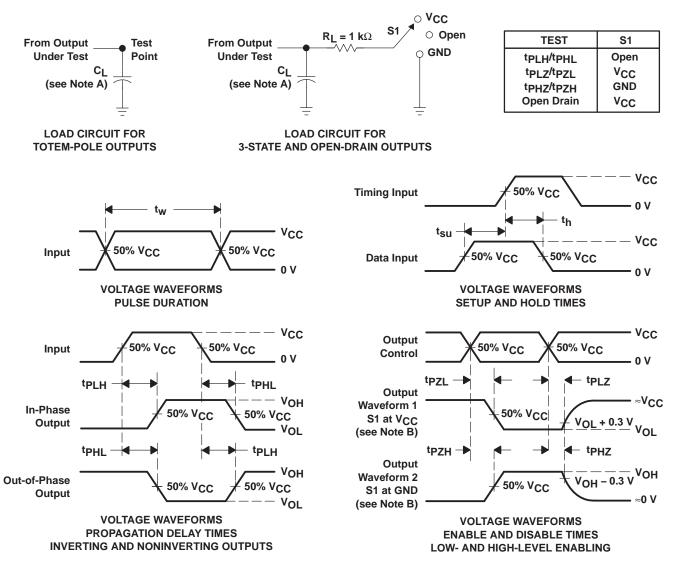
switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	T,	T _A = 25°C	;	MINI	MAX	LINUT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN		UNIT
f _{max}			C _L = 50 pF	85	150		75		MHz
		Q _A			4.9	10.5	1	12	
	0114	Q _B	C _L = 50 pF		5.6	11.8	1	13.5	
^t pd	CLK	QC			6.2	13.2	1	15	ns
		QD			6.6	14.5	1	16.5	
t _{PHL}	CLR	Q _n	•		5.2	10.1	1	11.5	

SN74LV393A-Q1 DUAL 4-BIT BINARY COUNTER

SCLS515B - JULY 2003 - REVISED MAY 2004

noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 5)


	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.3	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.2	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		2.8		V
VIH(D)	High-level dynamic input voltage	2.31			V
V _{IL(D)}	Low-level dynamic input voltage			0.99	V

NOTE 5: Characteristics are for surface-mount packages only.

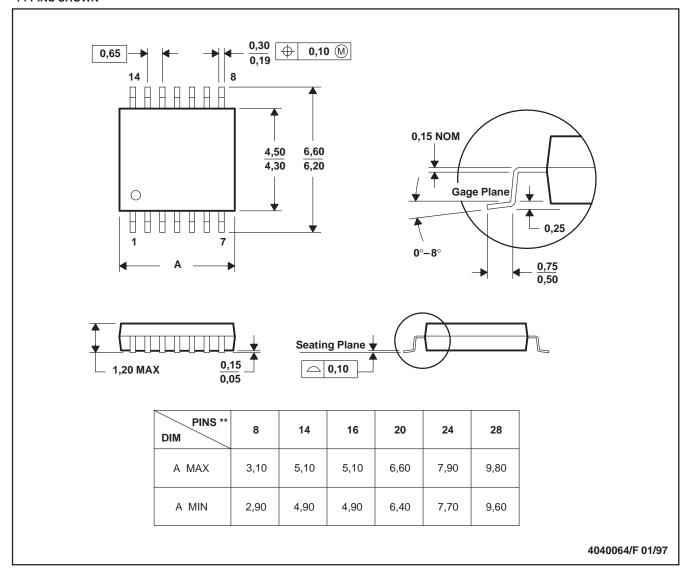
operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS		VCC	TYP	UNIT
<u> </u>	Dower discination conscitance	C _L = 50 pF, f =	f = 10 MHz	3.3 V	15.2	pF
Cpd	Power dissipation capacitance		1 = 10 WIHZ	5 V	17.3	

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_Q = 50 \Omega$, $t_f \leq 3$ ns, $t_f \leq 3$ ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzi and tpzH are the same as ten.
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


Figure 1. Load Circuit and Voltage Waveforms

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications		
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio	
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive	
DSP	dsp.ti.com	Broadband	www.ti.com/broadband	
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol	
Logic	logic.ti.com	Military	www.ti.com/military	
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork	
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security	
		Telephony	www.ti.com/telephony	
		Video & Imaging	www.ti.com/video	
		Wireless	www.ti.com/wireless	
Data Converters DSP Interface Logic Power Mgmt	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com	Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging	www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwor www.ti.com/security www.ti.com/telephony www.ti.com/video	

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.