

S1117-xxPI

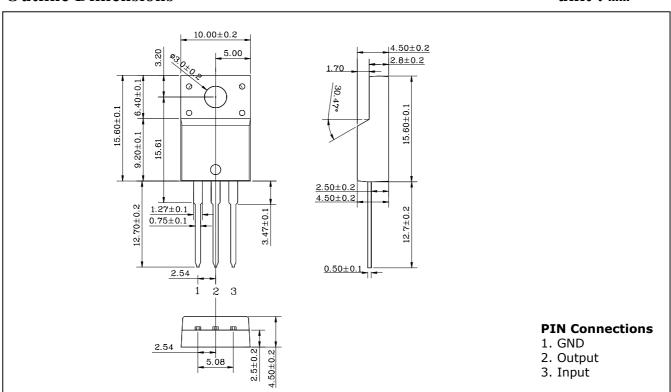
Fixed LDO Voltage Regulator

unit: mm

Descriptions

The S1117 series of positive fixed regulators are designed to provide 1A with higher efficiency than currently available devices. All internal circuitry is designed to operate down to 700mV input to output differential and the dropout voltage is fully specified as a function of load current. Dropout voltage of the device is 100mV at light loads and rising to 700mV at maximum output current. A second low current input is required to achieve this dropout. The S1117 can also be used as a single supply device.

Features


- Output Current of 1A
- 1.3V Maximum Dropout voltage at 1A Output Current
- 100% Thermal Limit Burn-In
- Fast Transient Response

Ordering Information

Type NO.	Marking	Package Code
S1117xxPI	S1117□□PI	TO-220F

□: Voltage Code (15:1.5V,18V:1.8V, 25:2.5V, 285:2.85V, 33:3.3V, 50:5.0V)

Outline Dimensions

KSI-2022-006

Absolute Maximum Ratings

Ta=25°C

Characteristic	Symbol	Ratings		Unit
		V _{out} =1.5,1.8	16	
Operating Input voltage	V_{IN}	V _{out} = 2.5 2.8 3.3 5.0	20	V
Power Dissipation (Tc=25°C)	P_{D}	20.8		W
Power Dissipation (without Heatsink)	P_{D}	2.0		W
Operating Junction Temperature	T_{OPR}	-30 ~ 125		°C
Storage Temperature	T _{STG}	-55 ~ 150		°C

Electrical Characteristics

 $(T_J = 0 \text{ to } 125\,^{\circ}\text{C}$, Cin=10uF, Cout=10uF unless otherwise specified.)

Charactaristic	Symbo	Symbo Test Condition	S1117-15PI			TI:4
Characteristic	l	Test Condition	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$V_{IN} = (V_{out} + 1.5V), \ I_{OUT} = 10mA, \ T_j = 25^{\circ}C$ $V_{IN} = (V_{out} + 1.5V) \ to \ 12V$ $I_{OUT} = 0 \ to \ 1000mA$	1.47 1.44	1.5	1.53 1.56	V
Line Regulation	$ riangle V_{OUT}$	$(V_{out}+1.5V) \le V_{in} \le 12V$, $I_{OUT}=10$ mA	-	10	30	mV
Load Regulation	$\triangle V_{OUT}$	$(V_{IN} - V_{out}) = 2V$, $10mA \le I_{OUT} \le 1A$	-	10	30	mV
Quiescent Current	I_Q	V _{IN} = 11.5V, I _{OUT} =0mA	-	3.6	10	mA
Dropout Voltage	V _D	I _{OUT} =1000mA	-	1.2	1.3	>
Ripple Rejection	RR	V _{IN} -V _{OUT} =3V, f=120Hz, I _{OUT} =1000mA	60	72	ı	dB
Output Noise Voltage	eN	$f=10 \text{ to } 10 \text{KHz}, T_j = 25^{\circ}\text{C}$	-	100	-	uV
Output Current	I _{OUT}	V_{IN} - V_{OUT} = 3V, T_j = 25°C	1000	1500	-	mA

^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into separately.

 $(T_J = 0 \text{ to } 125\,^{\circ}\!\!\!\text{C}$, Cin=10uF, Cout=10uF unless otherwise specified.)

Charactaristic	Cymbol	hal Test Condition	S1117-18PI			Unit
Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$\begin{array}{l} V_{IN}=\text{ (V}_{out}\text{+}1.5\text{V), } I_{OUT}=\text{ 10mA, } T_{j}=\text{ 25}^{\circ}\text{C} \\ V_{IN}=\text{ (V}_{out}\text{+}1.5\text{V) to 12V} \\ I_{OUT}=\text{ 0 to 1000mA} \end{array}$	1.764 1.728	1.8	1.836 1.872	V
Line Regulation	$\triangle V_{OUT}$	$(V_{out}+1.5V) \le V_{in} \le 12V$, $I_{OUT}=10$ mA	-	10	30	mV
Load Regulation	$\triangle V_{OUT}$	$(V_{IN} - V_{out}) = 2V$, $10mA \le I_{OUT} \le 1A$	ı	10	30	mV
Quiescent Current	I_Q	V _{IN} = 11.8V, I _{OUT} =0mA	ı	4.2	10	mA
Dropout Voltage	V_D	I _{OUT} =1000mA	1	1.2	1.3	V
Ripple Rejection	RR	V_{IN} - V_{OUT} =3V, f=120Hz, I_{OUT} =1000mA	60	72	ı	dB
Output Noise Voltage	eN	$f=10 \text{ to } 10 \text{KHz}, T_j = 25^{\circ}\text{C}$	1	100	-	uV
Output Current	I_{OUT}	V_{IN} - V_{OUT} = 3V, T_j = 25°C	1000	1500	-	mA

^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

Thermal effects must be taken into separately.

Characteristic	Cymbol	Tost Condition	S1117-25PI			IIni4
Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$\begin{array}{l} V_{IN}=(V_{out}+1.5V),~I_{OUT}=10\text{mA},~T_{j}=25^{\circ}\text{C}\\ V_{IN}=(V_{out}+1.5V)~\text{to}~12V\\ I_{OUT}=0~\text{to}~1000\text{mA} \end{array}$	2.45 2.4	2.5	2.55 2.6	V
Line Regulation	$\triangle V_{OUT}$	$(V_{out}+1.5V) \le V_{in} \le 12V$, $I_{OUT}=10$ mA	-	10	30	mV
Load Regulation	$\triangle V_{OUT}$	$(V_{IN} - V_{out}) = 2V$, $10mA \le I_{OUT} \le 1A$	-	10	30	mV
Quiescent Current	I_Q	V _{IN} = 10V, I _{OUT} =0mA	-	5.2	10	mA
Dropout Voltage	V_D	I _{OUT} =1000mA	-	1.2	1.3	V
Ripple Rejection	RR	V _{IN} -V _{OUT} =3V, f=120Hz, I _{OUT} =1000mA	60	72	ı	dB
Output Noise Voltage	eN	$f=10 \text{ to } 10 \text{KHz}, T_j = 25^{\circ}\text{C}$	-	100	1	uV
Output Current	I_{OUT}	V_{IN} - V_{OUT} = 3V, T_j = 25°C	1000	1500	-	mA

^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

Thermal effects must be taken into separately.

Characteristic	Cymbol	Tost Condition	S1117-285PI			IInit
Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$\begin{array}{l} V_{IN}=(V_{out}+1.5V),~I_{OUT}=10\text{mA},~T_{j}=25^{\circ}\text{C}\\ V_{IN}=(V_{out}+1.5V)~\text{to}~12V\\ I_{OUT}=0~\text{to}~1000\text{mA} \end{array}$	2.793 2.736	2.85	2.907 2.964	V
Line Regulation	$\triangle V_{OUT}$	$(V_{out}+1.5V) \le V_{in} \le 12V$, $I_{OUT}=10$ mA	-	10	30	mV
Load Regulation	$\triangle V_{OUT}$	$(V_{IN} - V_{out}) = 2V$, $10mA \le I_{OUT} \le 1A$	-	10	30	mV
Quiescent Current	I_Q	V _{IN} = 10V, I _{OUT} =0mA	-	5.5	10	mA
Dropout Voltage	V_D	I _{OUT} =1000mA	-	1.2	1.3	>
Ripple Rejection	RR	V _{IN} -V _{OUT} =3V, f=120Hz, I _{OUT} =1000mA	60	72	1	dB
Output Noise Voltage	eN	$f=10 \text{ to } 10 \text{KHz}, T_j = 25^{\circ}\text{C}$	-	100	-	uV
Output Current	I_{OUT}	V_{IN} - V_{OUT} = 3V, T_j = 25°C	1000	1500	-	mA

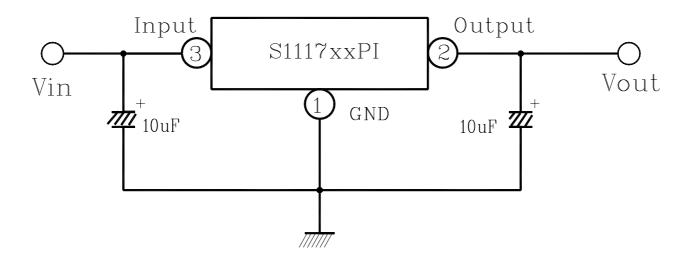
^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

Thermal effects must be taken into separately.

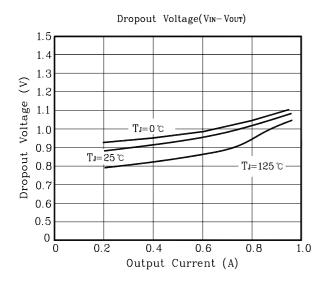
Characteristic	Symbol	1bol Test Condition	S1117-33PI			Unit
	Symbol	Test Condition	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$V_{IN} = (V_{out} + 1.5V), I_{OUT} = 10$ mA, $T_j = 25$ °C $V_{IN} = (V_{out} + 1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	3.234 3.168	3.3	3.366 3.432	V
Line Regulation	$\triangle V_{OUT}$	$(V_{out}+1.5V) \le V_{in} \le 12V$, $I_{OUT}=10$ mA	-	10	30	mV
Load Regulation	$\triangle V_{OUT}$	$(V_{IN} - V_{out}) = 2V$, $10mA \le I_{OUT} \le 1A$	-	10	30	mV
Quiescent Current	I_Q	V _{IN} = 15V, I _{OUT} =0mA	-	5.0	10	mA
Dropout Voltage	V_D	I _{OUT} =1000mA	-	1.2	1.3	V
Ripple Rejection	RR	V _{IN} -V _{OUT} =3V, f=120Hz, I _{OUT} =1000mA	60	72	-	dB
Output Noise Voltage	eN	$f=10 \text{ to } 10 \text{KHz}, T_j = 25^{\circ}\text{C}$	-	100	-	uV
Output Current	I _{OUT}	V_{IN} - V_{OUT} = 3V, T_j = 25°C	1000	1500	-	mA

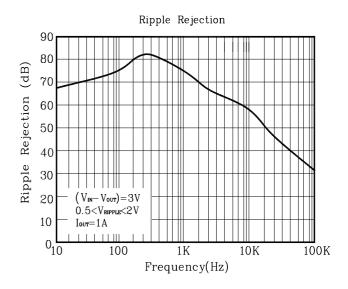
^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

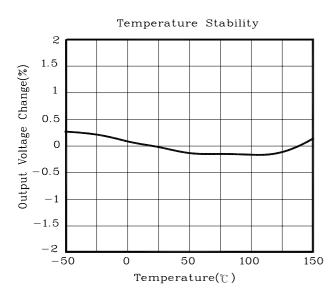
Thermal effects must be taken into separately.

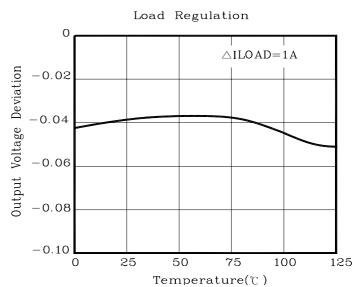

(T_J = 0 to 125 $^{\circ}$ C, Cin=10uF, Cout=10uF unless otherwise specified.)

Characteristic	Symbol	ol Test Condition	S1117-50PI			Unit
	Symbol	Test Condition	Min	Тур	Max	Omt
Output Voltage	V _{OUT}	V_{IN} = (V_{out} +1.5V), I_{OUT} = 10mA, T_j = 25°C V_{IN} = (V_{out} +1.5V) to 12V I_{OUT} = 0 to 1000mA	4.9 4.8	5.0	5.1 5.2	V
Line Regulation	$ riangle V_{OUT}$	$(V_{out}+1.5V) \le V_{in} \le 12V$, $I_{OUT}=10$ mA	-	10	30	mV
Load Regulation	$\triangle V_{OUT}$	$(V_{IN} - V_{out}) = 2V$, $10mA \le I_{OUT} \le 1A$	ı	10	30	mV
Quiescent Current	I_Q	V _{IN} = 15V, I _{OUT} = 0mA	ı	5.0	10	mA
Dropout Voltage	V_D	I _{OUT} =1000mA	ı	1.2	1.3	V
Ripple Rejection	RR	V_{IN} - V_{OUT} =3V, f=120Hz, I_{OUT} =1A	60	72	ı	dB
Output Noise Voltage	eN	$f=10 \text{ to } 10 \text{KHz}, T_j = 25^{\circ}\text{C}$	-	100	-	uV
Output Current	I_{OUT}	V_{IN} - V_{OUT} = 3V, T_j = 25°C	1000	1500		mA


^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.


Thermal effects must be taken into separately.


Test circuit



Electrical Characteristic Curves

These AUK products are intended for usage in general electronic equipments(Office and communication equipment, measuring equipment, domestic electrification, etc.).

Please make sure that you consult with us before you use these AUK products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, traffic signal, combustion central, all types of safety device, etc.).

AUK cannot accept liability to any damage which may occur in case these AUK products were used in the mentioned equipments without prior consultation with AUK.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.