NC7NZ04 TinyLogic® UHS Inverter

FAIRCHILD

SEMICONDUCTOR

NC7NZ04 TinyLogic® UHS Inverter

General Description

The NC7NZ04 is a triple inverter from Fairchild's Ultra High Speed Series of TinyLogic®. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- Ultra High Speed; t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

		Product					
Order	Package	Code		Package Description	Supplied As		
Number	Number	Top Mark					
NC7NZ04K8X	MAB08A	7NZ04	8-Lead US8, JED	EC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Re		
NC7NZ04L8X	MAC08A	Т3	Pb-Free 8-Lead N	/licroPak, 1.6 mm Wide	5k Units on Tape and Re		
Pb-Free package p	per JEDEC J-S	FD-020B.					
Logic Sy	mbol			Connection Diagram	IS		
		EE/IEC		V _{CC} 1Y 3A 8 7 6	2Y 5		
	1A.(1)	1	(7) 1Y				
	(3)	[(5)		¢		
	2A (3)	F	(5) _{2Y}	$ \bigtriangleup \rangle$	Д I		
	3A (6)		(2) _{3Y}				
	37			1 2 3			
				1A 3Y 2A (Top View			
Pin Desc	ription	S					
P	in Names	Des	cription	AAA (TOp View)			
	А		nput				
	Y	C	Output	AAA represents Product Code Top Mark - s	ee orderina code		
				Note: Orientation of Top Mark determines			
Function	Table			Product Code Mark left to right, Pin One is	the lower left pin (see diagram).		
Function	Table	$\mathbf{Y} = \overline{\mathbf{A}}$			the lower left pin (see diagram). or MicroPak		
Function	Table		utput	Product Code Mark left to right, Pin One is	the lower left pin (see diagram).		
Function			utput Y	Product Code Mark left to right, Pin One is	the lower left pin (see diagram). or MicroPak		
Function	Input		-	Product Code Mark left to right, Pin One is	the lower left pin (see diagram). or MicroPak		
Function	Input A		Y	Product Code Mark left to right, Pin One is Pad Assignments fo	the lower left pin (see diagram).		
H = HIGH Logic Le	Input A L H evel		Y H	Product Code Mark left to right, Pin One is Pad Assignments for 1A 3Y Vcc 8 Vcc 8 1 2	the lower left pin (see diagram). pr MicroPak		
H = HIGH Logic Le	Input A L H evel		Y H	Product Code Mark left to right, Pin One is Pad Assignments fo	the lower left pin (see diagram). or MicroPak 24 5 4 GND 3 2Y		

© 2005 Fairchild Semiconductor Corporation DS500489

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ V _{OUT} > 6V, V _{CC} = GND	+20 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T _J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 2)

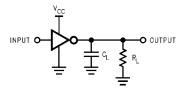
Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 1.8V, 2.5V \pm 0.2V$	0 ns/V to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 ns/V to 10 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions			
Symbol	Falance	(V)	Min	Тур	Max	Min	Max	Units		nutions
VIH	HIGH Level Input Voltage	1.8 ± 0.15	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input Voltage	1.8 ± 0.15			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2			V – V	⁷ IL Ι _{OH} = -100 μΑ
		3.0	2.9	3.0		2.9			$V_{IN} = V_{IL}$	
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29		V		$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1		$V_{IN} = V_{IH}$ $I_{OL} = 1$	
		2.3		0.0	0.1		0.1			I _{OL} =100 μA
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24	V		I _{OL} = 4 mA
		2.3		0.10	0.3		0.3			I _{OL} = 8 mA
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μA	$0 \leq V_{IN} \leq 5.$	5V
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	V_{IN} or V_{OU}	_T = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1.0		10	μA	$V_{IN} = 5.5V_{2}$	GND


Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conultions	Number
t _{PLH}	Propagation Delay	1.8 ± 0.15	1.8	4.4	9.5	2.0	10			
t _{PHL}		2.5 ± 0.2	0.8	2.9	5.1	0.8	5.6	ns	$C_L = 15 \text{ pF}$	Figures
		3.3 ± 0.3	0.5	2.1	3.4	0.5	3.8	115	$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5	0.5	1.8	2.8	0.5	3.1			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.2	2.9	4.5	1.2	5.0	ns	$C_L = 50 \text{ pF}$	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.6	0.8	4.0	115	$R_L = 500\Omega$	ĭ, 3
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation	3.3		9				~F	(Nata 2)	Figure 2
	Capacitance	5.0		11				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (CPD) (V_{CC}) (f_{IN}) + (I_{CC} static)$

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$	Unit
Cymbol	r didition		(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	-0.8	V

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_W = 500$ ns

FIGURE 1. AC Test Circuit

$$\label{eq:product} \begin{split} & \mathsf{Input} = \mathsf{AC} \mbox{ Waveform; } t_r = t_f = 1.8 \mbox{ ns;} \\ & \mathsf{PRR} = 10 \mbox{ MHz; } \mathsf{Duty} \mbox{ Cycle} = 50\% \\ & \textbf{FIGURE 2. } \mathbf{I_{CCD}} \mbox{ Test Circuit} \end{split}$$

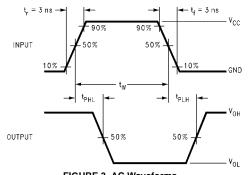
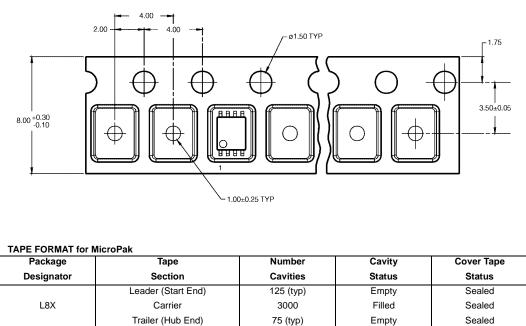
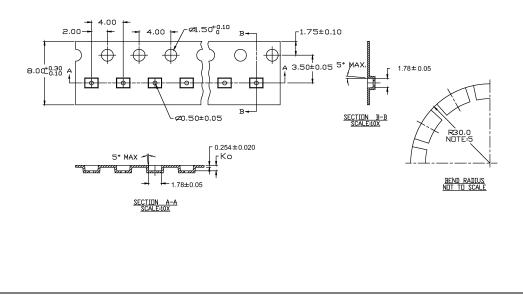
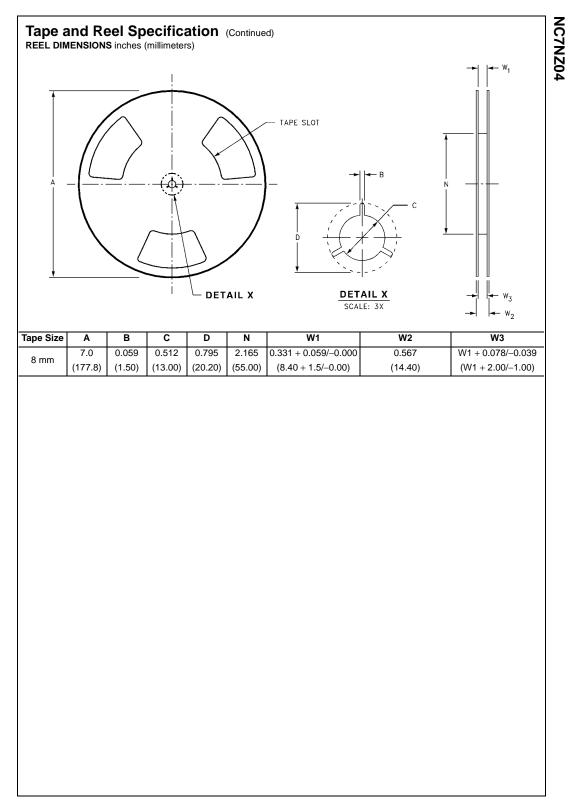
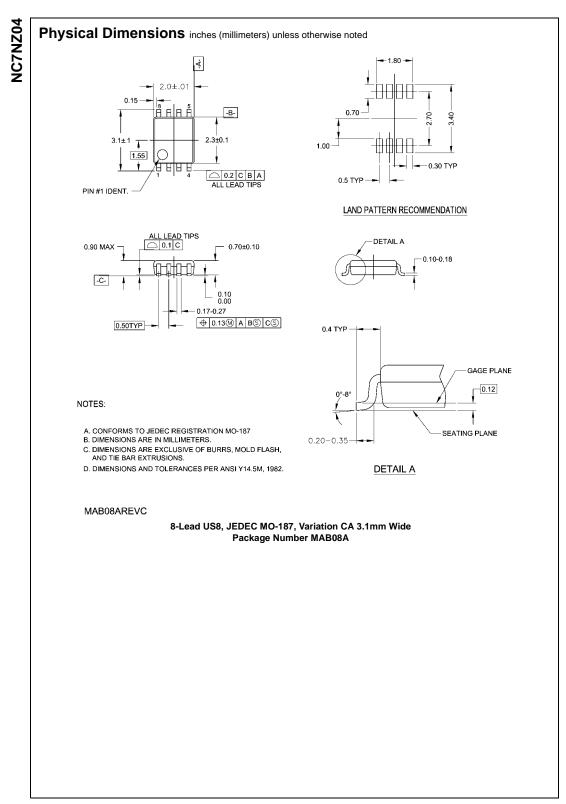


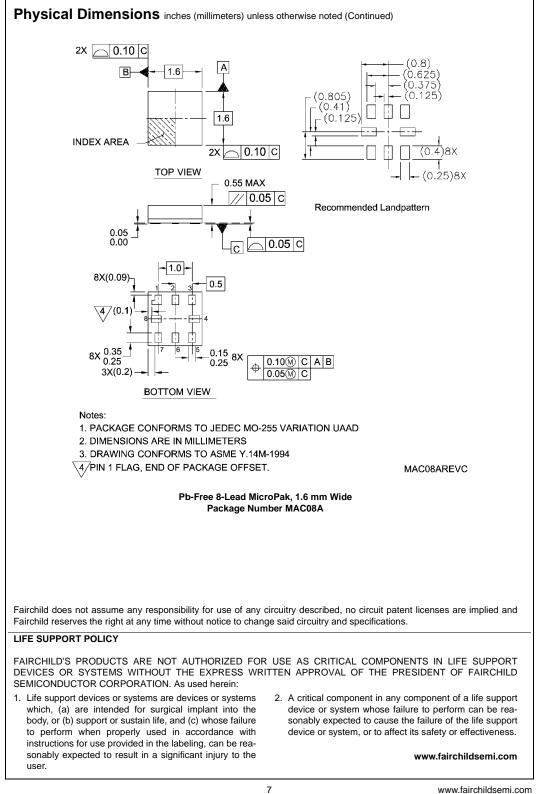
FIGURE 3. AC Waveforms


NC7NZ04


Tape and Reel Specification


TAPE FORMAT for U	JS8				
Package	Таре	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
K8X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	


TAPE DIMENSIONS inches (millimeters)



TAPE DIMENSIONS inches (millimeters)

NC7NZ04 TinyLogic® UHS Inverter

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.