## Surface Mount Schottky Power Rectifier

## SOD-123 Power Surface Mount Package

The Schottky Power Rectifier employs the Schottky Barrier principle with a barrier metal that produces optimal forward voltage drop-reverse current tradeoff. Ideally suited for low voltage, high frequency rectification, or as a free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package provides an alternative to the leadless 34 MELF style package. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Very Low Forward Voltage
- Epoxy Meets UL94, VO at 1/8"
- Package Designed for Optimal Automated Board Assembly

#### **Mechanical Characteristics:**

- Reel Options: 3,000 per 7 inch reel/8 mm tape
- Reel Options: 10,000 per 13 inch reel/8 mm tape
- Device Marking: B4
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C max. for 10 Seconds

### MAXIMUM RATINGS

| Rating                                                                                                            | Symbol                                                 | Value       | Unit |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                            | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | 40          | V    |
| Average Rectified Forward Current<br>(At Rated V <sub>R</sub> , T <sub>C</sub> = 115°C)                           | ۱ <sub>0</sub>                                         | 0.5         | A    |
| Peak Repetitive Forward Current<br>(At Rated V <sub>R</sub> , Square Wave,<br>20 kHz, T <sub>C</sub> = 115°C)     | I <sub>FRM</sub>                                       | 1.0         | A    |
| Non–Repetitive Peak Surge Current<br>(Surge Applied at Rated Load<br>Conditions Halfwave, Single<br>Phase, 60 Hz) | I <sub>FSM</sub>                                       | 5.5         | A    |
| Storage/Operating Case<br>Temperature Range                                                                       | T <sub>stg</sub> , T <sub>C</sub>                      | -55 to +150 | °C   |
| Operating Junction Temperature                                                                                    | TJ                                                     | -55 to +150 | °C   |
| Voltage Rate of Change (Rated $V_R$ , $T_J$ = 25°C)                                                               | dv/dt                                                  | 1000        | V/μs |



### ON Semiconductor<sup>™</sup>

http://onsemi.com

## SCHOTTKY BARRIER RECTIFIER 0.5 AMPERES 40 VOLTS



SOD-123 CASE 425 STYLE 1

#### MARKING DIAGRAM



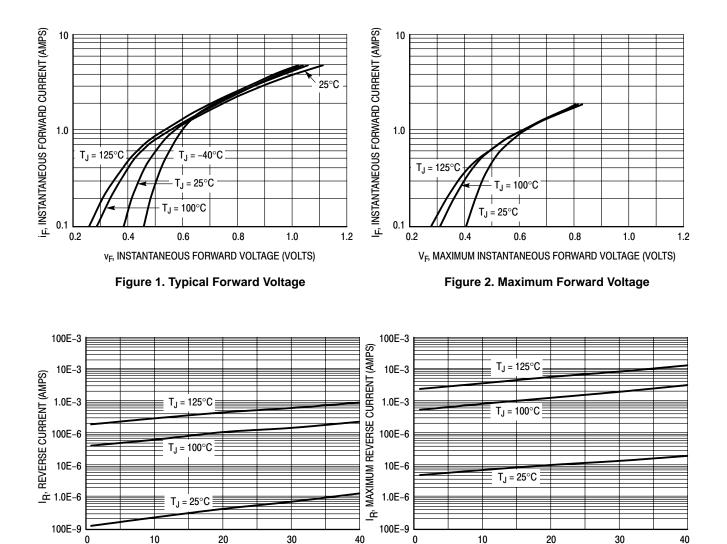
B4 = Device Code

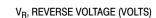
#### **ORDERING INFORMATION**

| Device    | Package | Shipping           |
|-----------|---------|--------------------|
| MBR0540T1 | SOD-123 | 3000/Tape & Reel   |
| MBR0540T3 | SOD-123 | 10,000/Tape & Reel |

#### THERMAL CHARACTERISTICS

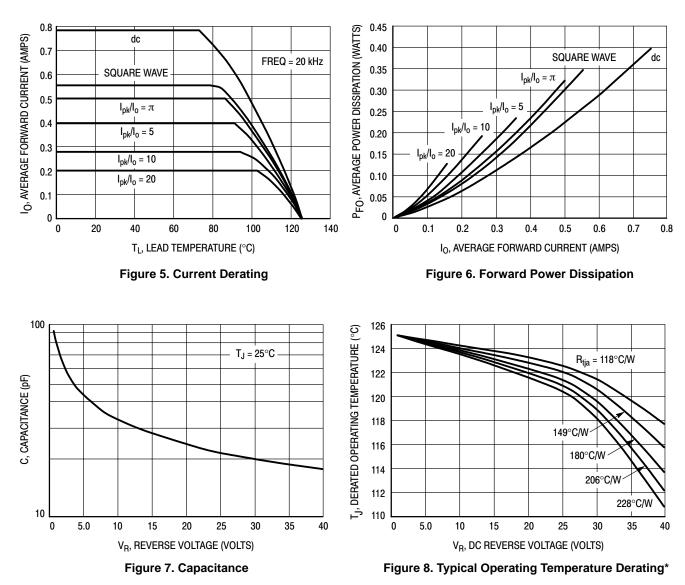
| Rating                                             | Symbol           | Value | Unit |
|----------------------------------------------------|------------------|-------|------|
| Thermal Resistance – Junction–to–Lead (Note 1.)    | R <sub>tjl</sub> | 118   | °C/W |
| Thermal Resistance – Junction–to–Ambient (Note 2.) | R <sub>tja</sub> | 206   |      |


#### **ELECTRICAL CHARACTERISTICS**


| Maximum Instantaneous Forward Voltage (Note 3.)    | VF             | T <sub>J</sub> = 25°C | $T_J = 100^{\circ}C$   | V  |
|----------------------------------------------------|----------------|-----------------------|------------------------|----|
| (i <sub>F</sub> = 0.5 A)<br>(i <sub>F</sub> = 1 A) |                | 0.51<br>0.62          | 0.46<br>0.61           |    |
| Maximum Instantaneous Reverse Current (Note 3.)    | I <sub>R</sub> | T <sub>J</sub> = 25°C | T <sub>J</sub> = 100°C | μΑ |
| (V <sub>R</sub> = 40 V)<br>(V <sub>R</sub> = 20 V) |                | 20<br>10              | 13,000<br>5,000        |    |

1. Mounted with minimum recommended pad size, PC Board FR4.

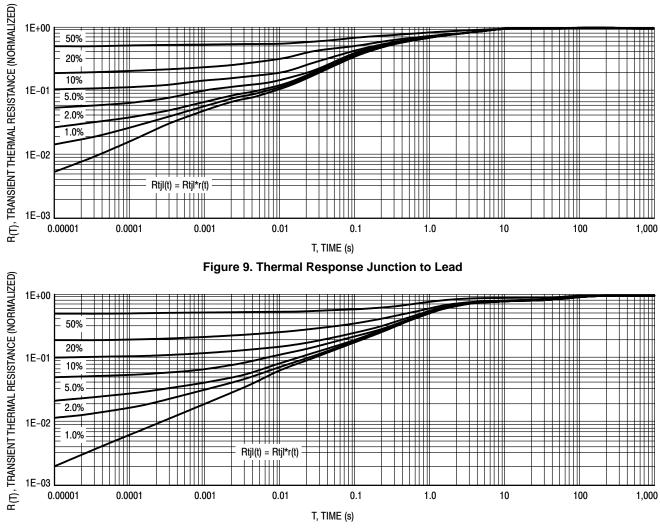
2. 1 inch square pad size (1 X 0.5 inch for each lead) on FR4 board.


3. Pulse Test: Pulse Width  $\leq$  250 µs, Duty Cycle  $\leq$  2.0%.



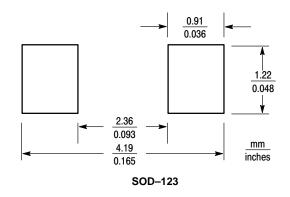






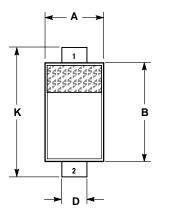


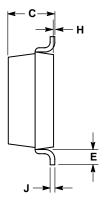

\* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of  $T_J$  therefore must include forward and reverse power effects. The allowable operating  $T_J$  may be calculated from the equation:  $T_J = T_{Jmax} - r(t)(Pf + Pr)$  where


- r(t) = thermal impedance under given conditions,
- Pf = forward power dissipation, and
- Pr = reverse power dissipation

This graph displays the derated allowable  $T_J$  due to reverse bias under DC conditions only and is calculated as  $T_J = T_{Jmax} - r(t)Pr$ , where r(t) = Rthja. For other power applications further calculations must be performed.







### **RECOMMENDED FOOTPRINT FOR SOD-123**



### PACKAGE DIMENSIONS

SOD-123 PLASTIC CASE 425-04 **ISSUE C** 





NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

| CONTROLLING D | IMENSION: INCH. |
|---------------|-----------------|
|---------------|-----------------|

|     | INCHES |       | MILLIMETERS |      |
|-----|--------|-------|-------------|------|
| DIM | MIN    | MAX   | MIN         | MAX  |
| Α   | 0.055  | 0.071 | 1.40        | 1.80 |
| В   | 0.100  | 0.112 | 2.55        | 2.85 |
| С   | 0.037  | 0.053 | 0.95        | 1.35 |
| D   | 0.020  | 0.028 | 0.50        | 0.70 |
| Е   | 0.004  |       | 0.25        |      |
| н   | 0.000  | 0.004 | 0.00        | 0.10 |
| J   |        | 0.006 |             | 0.15 |
| Κ   | 0.140  | 0.152 | 3.55        | 3.85 |

STYLE 1: PIN 1. CATHODE 2. ANODE

## <u>Notes</u>

## <u>Notes</u>

**ON Semiconductor** and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### PUBLICATION ORDERING INFORMATION

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit–french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781 \*Available from Germany, France, Italy, UK, Ireland

#### CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.