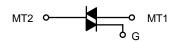
Preferred Device

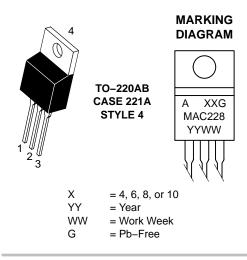
Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed primarily for industrial and consumer applications for full wave control of ac loads such as appliance controls, heater controls, motor controls, and other power switching applications.

Features


- Pb–Free Packages are Available
- Sensitive Gate Triggering in 3 Modes for AC Triggering on Sinking Current Sources
- Four Mode Triggering for Drive Circuits that Source Current
- All Diffused and Glass–Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance and High Heat Dissipation
- Center Gate Geometry for Uniform Current Spreading



ON Semiconductor®

http://onsemi.com

TRIACS 8 AMPERES RMS 200 – 800 VOLTS

ORDERING INFORMATION

Device	Package	Shipping [†]
MAC228A4	TO-220	500 Units/Box
MAC228A6	TO-220	500 Units/Box
MAC228A8	TO-220	500 Units/Box
MAC228A8G	TO-220 (Pb-Free)	500 Units/Box
MAC228A10	TO-220	500 Units/Box
MAC228A10G	TO-220 (Pb-Free)	500 Units/Box

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2004 August, 2004 – Rev. 3

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

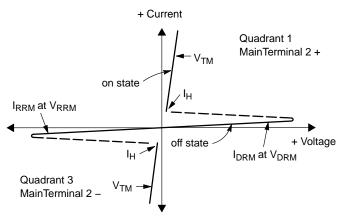
Characteristic		Symbol	Value	Unit
Peak Repetitive Off–State Voltage [,] (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open)	MAC228A4 MAC228A6 MAC228A8 MAC228A10	V _{drm,} V _{rrm}	200 400 600 800	V
On-State RMS Current, ($T_C = 80^{\circ}C$) – Full Cycle Sine Wave 50) to 60 Hz	I _{T(RMS)}	8.0	А
Peak Non–Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 110°C)		I _{TSM}	80	A
Circuit Fusing Considerations, (t = 8.3 ms)		l ² t	26	A ² s
Peak Gate Current, (t \leq 2 µs, T _C = 80°C)		I _{GM}	±2.0	А
Peak Gate Voltage, (t \leq 2 µs, T _C = 80°C)		V _{GM}	±10	V
Peak Gate Power, (t \leq 2 µs, T _C = 80°C)		P _{GM}	20	W
Average Gate Power, (t \leq 8.3 ms, T _C = 80°C)		P _{G(AV)}	0.5	W
Operating Junction Temperature Range		TJ	-40 to 110	°C
Storage Temperature Range		T _{stg}	-40 to 150	°C
Mounting Torque		-	8.0	in lb

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

damage may occur and reliability may be affected.
V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance – Junction-to-Case	$R_{\theta JC}$	2.0	°C/W
Thermal Resistance – Junction-to-Ambient		62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C


ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Peak Repetitive Blocking Current, (V _D = Rated V _{DRM} , V _{RRM} ; Gate Open) $T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$	I _{DRM} , I _{RRM}		-	10 2.0	μA mA
ON CHARACTERISTICS	-	-	-	-	
Peak On-State Voltage, (I _{TM} = \pm 11 A Peak, Pulse Width \leq 2 ms, Duty Cycle \leq 2%)	V _{TM}	-	-	1.8	V
Gate Trigger Current (Continuous DC), (V _D = 12 V, R _L = 100 Ω) MT2(+), G(+); MT2(+), G(-); MT2(-), G(-) MT2(-), G(+)	I _{GT}			5.0 10	mA
Gate Trigger Voltage (Continuous DC), (V _D = 12 V, R _L = 100 Ω) MT2(+), G(+); MT2(+), G(-); MT2(-), G(-) MT2(-), G(+)	V _{GT}			2.0 2.5	V
Gate Non–Trigger Voltage (Continuous DC), (V _D = 12 V, T _C = 110°C, R _L = 100 Ω) All Four Quadrants	V _{GD}	0.2	-	-	V
Holding Current, (V_D = 12 Vdc, Initiating Current = ±200 mA, Gate Open)	Iн	-	-	15	mA
Gate–Controlled Turn–On Time, (V_D = Rated V_{DRM} , I_{TM} = 16 A Peak, I_G = 30 mA)	t _{gt}	-	1.5	-	μs
DYNAMIC CHARACTERISTICS					

Critical Rate of Rise of Off-State Voltage, (V_D = Rated V _{DRM} , Exponential Waveform, T _C = 110°C)		-	25	-	V/µs
Critical Rate of Rise of Commutation Voltage, (V _D = Rated V _{DRM} , I _{TM} = 11.3 A, Commutating di/dt = 4.1 A/ms, Gate Unenergized, T _C = 80°C)	dv/dt(c)	-	5.0	-	V/µs

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
Ι _Η	Holding Current

MT2 POSITIVE (Positive Half Cycle) (+) MT2 (+) MT2 Quadrant II (+) I_{GT} GATE Quadrant I (–) I_{GT} GATE 0 0 <u>ф</u>мт1 **ф** МТ1 Ξ Ξ REF REF I_{GT} + I_{GT} (–) MT2 (–) MT2 Quadrant III (+) I_{GT} GATE **Quadrant IV** (-) I_{GT} 0 o **ф** МТ1 MT1 Ξ Ξ REF REF MT2 NEGATIVE (Negative Half Cycle)

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

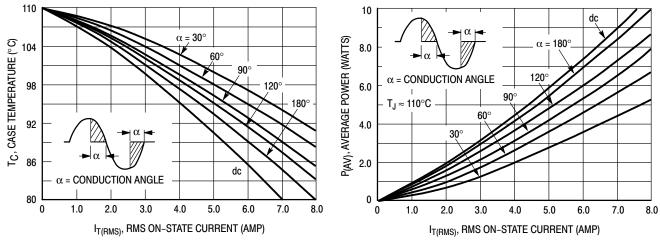
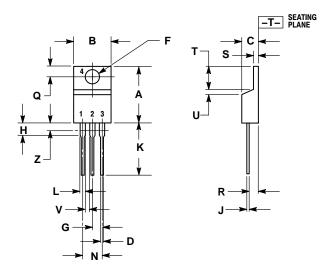



Figure 1. RMS Current Derating

Figure 2. On-State Power Dissipation

PACKAGE DIMENSIONS

TO-220 PLASTIC CASE 221A-09 **ISSUE AA**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIME	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04
Z TYLE	 4: 1. Main 2. Main			

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the body or other application in which the BSCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use patent as SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.