DESCRIPTION

The 38C8 group is the 8-bit microcomputer based on the 740 family core technology.
The 38C8 group has a LCD drive control circuit (bias control, time sharing control), a 10-bit A-D converter, and a Serial I/O as additional functions.
The various microcomputers in the 38C8 group include variations of internal memory size and packaging. For details, refer to the section on part numbering.

FEATURES

- Basic machine-language instructions 71
- The minimum instruction execution time $0.5 \mu \mathrm{~s}$
(at 8 MHz oscillation frequency)
- Memory size

- Programmable input/output ports
- Software pull-up resistors

Ports P0-P3, P41-P47

- Interrupts

15 sources, 15 vectors (includes key input interrupt)

- Timers \qquad 8 -bit $\times 3,16$-bit $\times 2$
- Serial I/O \qquad 8 -bit $\times 1$ (UART or Clock-synchronized) - A-D converter (32 kHz operating available) ... 10-bit $\times 8$ channels
- LCD drive control circuit

Bias ... 1/5, 1/7
Duty .. 1/16, 1/32
Common output .. 16 or 32
Segment output ... 52 or 68

- Main clock generating circuit (RC oscillation selectable) . (connect to external ceramic resonator or resistor)
- Sub-clock generating circuit
(connect to quartz-crystal oscilaltor)
- Power source voltage

In high-speed mode ... 4.0 to 5.5 V
In middle-speed mode .. 2.2 to 5.5 V
In low-speed mode.
2.2 to 5.5 V

- Power dissipation

In high-speed mode .30 mW
(at 8 MHz oscillation frequency, at 5 V power source voltage) In low-speed mode ... $60 \mu \mathrm{~W}$
(at 32 kHz oscillation frequency, at 3 V power source voltage, at WIT state, at voltage multiplier operating, LCD drive waveform generating state)

- Operating temperature range -20 to $85^{\circ} \mathrm{C}$

APPLICATIONS

Dot-matrix-type displays

PIN CONFIGURATION (TOP VIEW)

Package type : 144P6Q-A

Fig. 1 M38C89MF-XXXFP pin configuration

Fig. 2 Functional block diagram

PIN DESCRIPTION

Table 1 Pin description

Pin	Name	Function	Function except a port function
Vcc, Vss	Power source	- Apply voltage of 4.0-5.5 V to Vcc, and 0 V to Vss. (at high-speed mode)	
$\overline{\text { RESET }}$	Reset input	- Reset input pin for active "L."	
XIN	Clock input	- Input and output pins for the main clock generating circuit. - Feedback resistor is built in between Xin pin and Xout pin. - Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to set the oscillation frequency. - If an external clock is used, connect the clock source to the XIN pin and leave the Xout pin open.	
OSCSEL	RC oscillation select	- This pin determines the oscillation between XIN and Xout. The oscillation method can be selected from either by an oscillator or by a resistor.	
XCIN	Sub-clock input	- Input and output pins for sub-clock generating circuit. (Connect a quartz-crystal oscillator between the XCIN and Xcout pins to set the oscillation frequency. The clock generated the externals cannot be input directly.)	
XCOUT	Sub-clock output		
VLIN	Power source input for LCD	- Reference voltage input pin for LCD. - The input voltage to this pin is boosted threefold by voltage multiplier.	
VL1 - VL5	LCD power source	- LCD drive power source pins.	
$\begin{array}{\|l} \hline \text { COM0- } \\ \text { COM32 } \end{array}$	Common output	- LCD common output pins.	
$\begin{array}{\|l} \text { SEGo/COM16- } \\ \text { SEG7/COM23, } \\ \text { SEG60COM31- } \\ \text { SEG67/COM24 } \\ \hline \end{array}$	Segment output/ Common output	- LCD segment/common output pins.	
SEG8-SEG59	Segment output	- LCD segment output pins.	
P00-P07	I/O port P0	- 8-bit l/O port. - CMOS compatible input level. - CMOS 3-state output structure.	
P14-P17	I/O port P1		
P10/AIN4P13/AIN7			- A-D converter analog input pin
P20-P27	I/O port P2		- Key-on wake-up interrupt input pin
$\begin{aligned} & \text { P3o/AIN0 - } \\ & \text { P33/AIN3 } \end{aligned}$	I/O port P3	- 4-bit I/O port. - CMOS compatible input level. - CMOS 3-state output structure.	- A-D converter analog input pin
P40/INT0	Input port P4	- 1-bit input port. - CMOS compatible input level.	- External interrupt pin
P41/INT 1/ADT	I/O port P4	- 7-bit I/O port. - CMOS compatible input level. - CMOS 3-state output structure. - I/O direction register allows each pin to be individually programmed as either input or output.	- External interrupt pin - A-D trigger input pin
P42/CNTR0/ BEEP+, P43/CNTR1/ BEEP-			-Timer function I/O pin
$\begin{aligned} & \text { P44/RxD, } \\ & \text { P45/TxD, } \\ & \text { P46/ScLK, } \\ & \text { P47/SRDY } \end{aligned}$			- Serial I/O I/O pin
C1, C2, C3	Voltage multiplier	- External capacitor connect pins for a voltage multiplier of LCD.	
Vss (NC), NC		- Non-function pins. - Leave the Vss (NC) pin open.	

PART NUMBERING

Product M38C8

Fig. 3 Part numbering

GROUP EXPANSION

Mitsubishi plans to expand the 38C8 group as follows.

Memory Type

Support for mask ROM and One Time PROM versions

Memory Size

ROM/PROM size .. 60 K bytes
RAM size 2048 bytes

Packages

144P6Q-A
0.5 mm -pitch plastic molded QFP

Memory Expansion Plan

Products under development or planning: the development schedule and specification may be revised without notice. The development of planning products may be stopped.
Fig. 4 Memory expansion plan

Currently planning products are listed below.

Table 2 Support products
As of Dec. 2000

Product name	(P) ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38C89MF-XXXFP	$61440(61310)$	2048	144P6Q-A	Mask ROM version
M38C89EFFP	$61440(61310)$	2048	144P6Q-A	One Time PROM version

FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)

The 38C8 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set.
Machine-resident 740 family instructions are as follows:
The FST and SLW instruction cannot be used.
The STP, WIT, MUL, and DIV instruction can be used.

[Accumulator (A)]

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.

[Index Register X (X)]

The index register X is an 8 -bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.

[Stack Pointer (S)]

The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts.
The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack page selection bit is " 0 ", the high-order 8 bits becomes " 0016 ". If the stack page selection bit is " 1 ", the high-order 8 bits becomes " 0116 ".
The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 6.
Store registers other than those described in Figure 6 with program when the user needs them during interrupts or subroutine calls.

[Program Counter (PC)]

The program counter is a 16-bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.

[Index Register Y (Y)]

The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.

Fig. 5740 Family CPU register structure

Fig. 6 Register push and pop at interrupt generation and subroutine call

Table 3 Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

[Processor status register (PS)]

The processor status register is an 8-bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch operations can be performed by testing the Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.
-Bit 0: Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.
-Bit 1: Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation or a data transfer is " 0 ", and cleared if the result is anything other than " 0 ".
-Bit 2: Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt generated by the BRK instruction.
Interrupts are disabled when the I flag is " 1 ".
-Bit 3: Decimal mode flag (D)
The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is " 0 "; decimal arithmetic is executed when it is " 1 ". Decimal correction is automatic in decimal mode. Only the ADC
-Bit 4: Break flag (B)
The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always " 0 ". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to " 1 ".
-Bit 5: Index X mode flag (T)
When the T flag is " 0 ", arithmetic operations are performed between accumulator and memory. When the T flag is " 1 ", direct arithmetic operations and direct data transfers are enabled between memory locations.
-Bit 6: Overflow flag (V)
The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128 . When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.
-Bit 7: Negative flag (N)
The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.

Table 4 Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC	-	SEl	SED	-	SET	-	-
Clear instruction	CLC	-	CLI	CLD	-	CLT	CLV	-

[CPU Mode Register (CPUM)] 003B16

The CPU mode register contains the stack page selection bit and the internal system clock selection bit.
The CPU mode register is allocated at address 003B16.

Fig. 7 Structure of CPU mode register

MEMORY

Special Function Register (SFR) Area

The Special Function Register area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode.

RAM area

RAM size (bytes)	Address XXXX16 $_{16}$
192	$0^{00 F_{16}}$
256	$013 F_{16}$
384	$0^{01 \mathrm{BF}_{16}}$
512	$0^{023 F_{16}}$
640	$02 \mathrm{BF}_{16}$
768	$033 \mathrm{~F}_{16}$
896	$03 \mathrm{FF}_{16}$
1024	$043 \mathrm{~F}_{16}$
1536	$063 \mathrm{~F}_{16}$
2048	$083 \mathrm{~F}_{16}$

ROM area

ROM size (bytes)	Address YYYY16	Address ZZZZ16
4096	F00016	F08016
8192	E00016	E08016
12288	D00016	D08016
16384	C00016	C08016
20480	B00016	B08016
24576	A00016	A08016
28672	900016	908016
32768	800016	808016
36864	700016	708016
40960	600016	608016
45056	500016	508016
49152	400016	408016
53248	300016	308016
57344	200016	208016
61440	100016	108016
162		

> * The stard address of the LCD display area can be switched either zero page (addresses $004016-00 E F_{16}$) or 3 page (addresses $034016-03 E F_{16}$) by software. Immediately after reset released, 3 page is selected.

Fig. 8 Memory map diagram

000016	Port P0 (P0)
000116	Port P0 direction register (P0D)
000216	Port P1 (P1)
000316	Port P1 direction register (P1D)
000416	Port P2 (P2)
000516	Port P2 direction register (P2D)
000616	Port P3 (P3)
000716	Port P3 direction register (P3D)
000816	Port P4 (P4)
000916	Port P4 direction register (P4D)
000A16	
000B16	
$000 \mathrm{C}_{16}$	
000D16	
000E16	
000F16	
001016	
001116	
001216	
001316	
001416	
001516	
001616	PULL register A (PULLA)
001716	PULL register B (PULLB)
001816	Transmit/Receive buffer register (TB/RB)
001916	Serial I/O status register (SIOSTS)
001A16	Serial I/O control register (SIOCON)
001B16	UART control register (UARTCON)
$001 \mathrm{C}_{16}$	Baud rate generator (BRG)
001D16	
001E16	
001F16	

002016	Timer X (low-order) (TXL)
002116	Timer X (high-order) (TXH)
002216	Timer Y (low-order) (TYL)
002316	Timer Y (high-order) (TYH)
002416	Timer 1 (T1)
002516	Timer 2 (T2)
002616	Timer 3 (T3)
002716	Timer X mode register (TXM)
002816	Timer Y mode register (TYM)
002916	Timer 123 mode register (T123M)
002A16	
002B16	
002C16	
002D16	
002E16	
002F16	
003016	
003116	A-D control register (ADCON)
003216	A-D conversion register (low-order) (ADL)
003316	A-D conversion register (high-order) (ADH)
003416	
003516	
003616	
003716	LCD control register 1 (LC1)
003816	LCD control register 2 (LC2)
003916	LCD mode register (LM)
003A16	Interrupt edge selection register (INTEDGE)
003B16	CPU mode register (CPUM)
003C16	Interrupt request register 1 (IREQ1)
003D16	Interrupt request register 2 (IREQ2)
003E16	Interrupt control register 1 (ICON1)
003F16	Interrupt control register 2 (ICON2)

Fig. 9 Memory map of special function register (SFR)

I/O PORTS

[Direction Registers]

The I/O ports P0-P3 and P41-P47 have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input port or output port.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.
If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Pull-up Control

By setting the PULL register A (address 001616) or the PULL register B (address 001716), ports P0 to P4 except for port P40 can control pull-up with a program.
However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports.

Note: The contents of PULL register A and PULL register B do not affect ports programmed as the output port.

Fig. 10 Structure of PULL register A and PULL register B

Table 5 List of I/O port function

Pin	Name	Input/Output	I/O format	Non-port function	Related SFRs	Ref. No.
P00-P07	Port P0	Input/Output, individual bits	CMOS 3-state output		PULL register A	(1)
P10/AN4P13/AN7	Port P1				PULL register A A-D control register	(2)
P14-P17					PULL register A	(1)
P20-P27	Port P2	Input/Output, individual bits	CMOS compatible input level CMOS 3-state output	Key input (key-on wake-up) interrupt input	PULL register A Interrupt control register 2	(1)
P30/AN0- P33/AN3	Port P3	Input/Output, individual bits	CMOS 3-state output	A-D converter input	PULL register A A-D control register	(2)
P40/INT0	Port P4	Input	CMOS compatible input level	External interrupt input	PULL register B Interrupt edge select register	(3)
P41/INT1		Input/Output, individual bits	CMOS compatible input level CMOS 3-state output			(1)
$\begin{aligned} & \hline \text { P42/CNTRo/ } \\ & \text { BEEP+ } \\ & \hline \end{aligned}$				Timer X function I/O	PULL register B Timer X mode register	(4)
P43/CNTR1/ BEEP-				Timer Y function input	PULL register B Timer Y mode register	(5)
P44/RxD				Serial I/O funtion I/O	PULL register B Serial I/O control register Serial I/O status register UART control register	(6)
P45/TxD						(7)
P46/SCLK						(8)
P47/-SRDY						(9)
COM0-COM7, COM8-COM15	Common	Output	LCD common output		LCD mode register	
SEGo/COM $16-$ SEG7/COM23,	Segment/ Common		LCD segment output LCD common ouput			
SEG8-SEG59	Segment		LCD segment output			

Fig. 11 Port block diagram (1)
(6) Port P44

(7) Port P45

(9) Port P47

Fig. 12 Port block diagram (2)

INTERRUPTS

Interrupts occur by fifteen sources: six external, eight internal, and one software.

Interrupt Control

Each interrupt except the BRK instruction interrupt have both an interrupt request bit and an interrupt enable bit, and is controlled by the interrupt disable flag. An interrupt occurs if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is "0".
Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction interrupt and reset cannot be disabled with any flag or bit. The I flag disables all interrupts except the BRK instruction interrupt and reset. If several interrupts requests occurs at the same time the interrupt with highest priority is accepted first.

Interrupt Operation

By acceptance of an interrupt, the following operations are automatically performed:

1. The processing being executed is stopped.
2. The contents of the program counter and processor status register are automatically pushed onto the stack.
3. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
4. The interrupt jump destination address is read from the vector table into the program counter.

■Notes on interrupts

When setting the followings, the interrupt request bit may be set to "1".
-When setting external interrupt active edge
Related register: Interrupt edge selection register (address 3A16)
Timer X mode register (address 2716)
Timer Y mode register (address 2816)
-When switching interrupt sources of an interrupt vector address where two or more interrupt sources are allocated
Related register: AD control regsiter (address 3116)

When not requiring for the interrupt occurrence synchronized with these setting, take the following sequence.
(1)Set the corresponding interrupt enable bit to " 0 " (disabled).
(2)Set the interrupt edge select bit (active edge switch bit) or the interrupt source select bit to " 1 ".
(3)Set the corresponding interrupt request bit to "0" after 1 or more instructions have been executed.
(4)Set the corresponding interrupt enable bit to "1" (enabled).

Table 6 Interrupt vector addresses and priority

| Interrupt Source | Priority | Vector Addresses (Note 1) | Interrupt Request
 Generating Conditions | Remarks |
| :--- | :---: | :---: | :---: | :--- | :--- |

Notes 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.

Fig. 13 Interrupt control

0 : Falling edge active
1 : Rising edge active

0 : No interrupt request issued
1 : Interrupt request issued

CNTRo interrupt enable bit CNTR 1 interrupt enable bit Timer 1 interrupt enable bi Not used (returns " 0 " when read)
(Do not write " 1 " to this bit)
Key input interrupt enable bit
AD conversion interrupt enable bit
Not used (returns "0" when read)
(Do not write " 1 " to this bit)
0 : Interrupts disabled
1 : Interrupts enabled

Fig. 14 Structure of interrupt-related registers

Key Input Interrupt (Key-on Wake-Up)

A key input interrupt request is generated by applying "L" level to any pin of port P2 that have been set to input mode. In other words, it is generated when AND of input level goes from " 1 " to " 0 ". An example
of using a key input interrupt is shown in Figure 15, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports $\mathrm{P} 20-\mathrm{P} 23$.

Fig. 15 Connection example when using key input interrupt and port P2 block diagram

TIMERS

The 38C8 group has five timers: timer X , timer Y , timer 1, timer 2, and timer 3. Timer X and timer Y are 16-bit timers, and timer 1, timer 2, and timer 3 are 8 -bit timers.
All timers are down count timers. When the timer reaches " 0016 ", an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer
is set to " 1 ".
Read and write operation on 16-bit timer must be performed for both high and low-order bytes. When reading a 16-bit timer, read the highorder byte first. When writing to a 16-bit timer, write the low-order byte first. The 16-bit timer cannot perform the correct operation when reading during the write operation, or when writing during the read operation.

Fig. 16 Timer block diagram

Timer X

Timer X is a 16-bit timer that can be selected in one of four modes and can be controlled the timer X write by setting the timer X mode register.

(1) Timer Mode

When the timer X count source selection bit is " 0 ", the timer counts $f(X I N) / 16(\operatorname{or} f(X C I N) / 16$ in low-speed mode). When it is " 1 ", the timer counts $f(X I N)$.

(2) Buzzer Output Mode

Each time the timer underflows, a signal output from the BEEP+ pin is inverted. When the BEEP- valid bit is " 1 ", the opposite phase of $B E E P+$ signal is output from the BEEP- pin. When using the BEEP+ pin and the BEEP- pin, set ports shared with these pins to output.

(3) Event Counter Mode

The timer counts signals input through the CNTRo pin.
Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the port shared with the CNTRo pin to input.

(4) Pulse Width Measurement Mode

When the timer X count source selection bit is " 0 ", the count source is $f(\operatorname{XIN}) / 16$ (or $f(X C I N) / 16$ in low-speed mode). When it is " 1 ", the count source is $f(X I N)$.
If CNTRo active edge switch bit is " 0 ", the timer counts while the input signal of CNTRo pin is at " H ". If it is " 1 ", the timer counts while the input signal of CNTRo pin is at " L ". When using a timer in this mode, set the port shared with the CNTRo pin to input.

-Timer X write control

If the timer X write control bit is " 0 ", when the value is written in the address of timer X, the value is loaded in the timer X and the latch at the same time.
If the timer X write control bit is " 1 ", when the value is written in the address of timer X , the value is loaded only in the latch. The value in the latch is loaded in timer X after timer X underflows.
If the value is written in latch only, unexpected value may be set in the high-order counter when the writing in high-order latch and the underflow of timer X are performed at the same timing.

■Notes on CNTRo interrupt active edge selection

CNTRo interrupt active edge depends on the CNTRo active edge switch bit.

Fig. 17 Structure of timer X mode register

Timer Y

Timer Y is a 16-bit timer that can be selected in one of four modes.

(1) Timer Mode

The timer counts $f(X I N) / 16$ (or $f(X C I N) / 16$ in low-speed mode).

(2) Period Measurement Mode

CNTR1 interrupt request is generated at rising/falling edge of CNTR1 pin input signal. Simultaneously, the value in timer Y latch is reloaded in timer Y and timer Y continues counting down. Except for the abovementioned, the operation in period measurement mode is the same as in timer mode.
The timer value just before the reloading at rising/falling of CNTR1 pin input signal is retained until the timer Y is read once after the reload.
The rising/falling timing of CNTR1 pin input signal is found by CNTR1 interrupt. When using a timer in this mode, set the port shared with the CNTR1 pin to input.

(3) Event Counter Mode

The timer counts signals input through the CNTR1 pin.
Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the port shared with the CNTR1 pin to input.

(4) Pulse Width HL Continuously Measurement Mode

CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode. When using a timer in this mode, set the port shared with the CNTR1 pin to input.

-Notes on CNTR1 interrupt active edge selection

CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit. However, in the pulse width HL continuously measurement mode, CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit.

* Internal clock ϕ in low-speed mode is XCIN divided by 2.

When the timer X operating mode bits are " 00 " or " 11 ", the timer X count source is $f\left(X_{\mathrm{ClN}}\right) / 16$. When the timer X operating mode bits are " 01 ", the timer X count source is $f\left(X_{\mathrm{ClN}}\right)$.

Fig. 18 Structure of timer Y mode register

Timer 1, Timer 2, Timer 3

Timer 1, timer 2, and timer 3 are 8 -bit timers. The count source for each timer can be selected by the timer 123 mode register. The timer latch value is not affected by a change of the count source. However, because changing the count source may cause an inadvertent count down of the timer. Therefore, rewrite the value of timer whenever the count source is changed.

- Timer 2 write control

If the timer 2 write control bit is " 0 ", when the value is written in the address of timer 2, the value is loaded in the timer 2 and the latch at the same time.
If the timer 2 write control bit is " 1 ", when the value is written in the address of timer 2 , the value is loaded only in the latch. The value in the latch is loaded in timer 2 after timer 2 underflows.

■Notes on timer 1 to timer 3

When the count source of timer 1 to 3 is changed, the timer counting value may be changed large because a thin pulse is generated in count input of timer. If timer 1 output is selected as the count source of timer 2 or timer 3 , when timer 1 is written, the counting value of timer 2 or timer 3 may be changed large because a thin pulse is generated in timer 1 output.
Therefore, set the value of timer in the order of timer 1, timer 2 and timer 3 after the count source selection of timer 1 to 3 .

Fig. 19 Structure of timer 123 mode register

SERIAL I/O

Serial I/O can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer (baud rate generator) is also provided for baud rate generation.

(1) Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O can be selected by setting the mode selection bit of the serial I/O control register to "1".
For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the transmit/receive buffer registers.

Fig. 20 Block diagram of clock synchronous serial I/O

Fig. 21 Operation of clock synchronous serial I/O function

(2) Asynchronous Serial I/O (UART) Mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O control register to " 0 ".
Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer register,
but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the receive buffer.
The transmit buffer can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.

Fig. 22 Block diagram of UART serial I/O

Fig. 23 Operation of UART serial I/O function

[Transmit Buffer/Receive Buffer Register (TB/RB)] 001816

The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer register is write-only and the receive buffer register is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer register is " 0 ".

[Serial I/O Status Register (SIOSTS)] 001916

The read-only serial I/O status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to " 0 " when the receive buffer is read.
If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE. Writing " 0 " to the serial I/O enable bit (SIOE) also clears all the status flags, including the error flags.
All bits of the serial I/O status register are initialized to " 0 " at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to " 1 ", the transmit shift register shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become " 1 ".

[Serial I/O Control Register (SIOCON)] 001A16

The serial I/O control register contains eight control bits for the serial I/O1 function.

[UART Control Register (UARTCON)]001B16

This is a 5 bit register containing four control bits, which are valid when UART is selected and set the data format of an data receiver/ transfer, and one control bit, which is always valid and sets the output structure of the $\mathrm{P} 45 / \mathrm{T} \times \mathrm{D}$ pin.

[Baud Rate Generator(BRG)] 001616

The baud rate generator determines the baud rate for serial transfer. The baud rate generator divides the frequency of the count source by $1 /(n+1)$, where n is the value written to the baud rate generator.

- Notes on serial I/O

When setting the transmit enable bit to "1", the serial I/O transmit interrupt request bit is automatically set to " 1 ". When not requiring the interrupt occurrence synchronized with the transmission enalbed, take the following sequence.
(1)Set the serial I/O transmit interrupt enable bit to "0" (disabled). (2) Set the transmit enable bit to " 1 ".
(3)Set the serial I/O transmit interrupt request bit to " 0 " after 1 or more instructions have been executed.
(4) Set the serial I/O transmit interrupt enable bit to "1" (enabled).

- Transmit shift register shift completion flag (TSC)

0 : Transmit shift in progress
1: Transmit shift completed
Overrun error flag (OE)
0 : No error
1: Overrun error
Parity error flag (PE)
0 : No error
1: Parity error
Framing error flag (FE)
0 : No error
1: Framing error
Summing error flag (SE)
0 : OE U PE U FE =0
1: OE \cup PE \cup FE $=1$
Not used (returns "1" when read)

Character length selection bit (CHAS)
$0: 8$ bits
1:7 bitsParity enable bit (PARE)
0 : Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0 : Even parity
1: Odd parity
Stop bit length selection bit (STPS)
$0: 1$ stop bit
$1: 2$ stop bits
P45/TxD P-channel output disable bit (POFF)
0 : CMOS output (in output mode)
1: N -channel open-drain output (in output mode)

- Not used (return "1" when read)

Serial I/O control register
(SIOCON : address 001A16)
BRG count source selection bit (CSS)
$0: f(\mathrm{Xin})(f(X \operatorname{lin})$ in low-speed mode)
1: $\mathrm{f}(\mathrm{Xin}) / 4(\mathrm{f}(\mathrm{XcIN}) / 4$ in low-speed mode)
Serial I/O synchronous clock selection bit (SCS)
0 : BRG output divided by 4 when clock synchronous serial I/O is selected
BRG output divided by 16 when UART is selected.
1: External clock input when clock synchronous serial I/O is
selected.
External clock input divided by 16 when UART is selected.
$\overline{\text { SRDY }}$ output enable bit (SRDY)
0: P47 pin operates as ordinary I/O pin.
1: P 47 pin operates as $\overline{\text { SRDY output pin. }}$
Transmit interrupt source selection bit (TIC)
0 : Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0 : Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0 : Receive disabled
1: Receive enabled
Serial I/O mode selection bit (SIOM)
0 : Asynchronous serial I/O (UART)
1: Clock synchronous serial I/O
Serial I/O enable bit (SIOE)
0 : Serial I/O disabled
(pins P44-P47 operate as ordinary I/O pins)
1: Serial I/O enabled
(pins $\mathrm{P} 44-\mathrm{P} 47$ operate as serial I/O pins)

Fig. 24 Structure of serial I/O control registers

A-D CONVERTER
 [A-D Conversion Registers (ADL, ADH)] 003216, 003316

The A-D conversion registers are read-only registers that contain the result of an A-D conversion. During A-D conversion, do not read these registers.

[A-D Control Register (ADCON)] 003116

The A-D control register controls the A-D conversion process. Bits 0 to 2 are analog input pin selection bits. Bit 3 is an A-D conversion completion bit and " 0 " during A-D conversion, then changes to " 1 " when the A-D conversion is completed. Writing " 0 " to this bit starts the A-D conversion. When bit 5 , which is the $A D$ external trigger valid bit, is set to " 1 ", A-D conversion is started even by a rising edge or falling edge of an ADT input.

Comparator and Control Circuit

The comparator and control circuit compares an analog input voltage with the comparison voltage and stores the result in the A-D conversion register. When an A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to " 1 ".
Because the comparator consists of a capacitor coupling, a deficient conversion speed may cause lack of electric charge and make the conversion accuracy worse. When A-D conversion is performed in the middle-speed mode or the high-speed mode, set $f($ XIN $)$ to at least 500 kHz .
In the low-speed mode, A-D conversion is performed by using the built-in self-oscillation circuit. Therefore, there is no limitation in the lower bound frequency of $f(X I N)$.

Trigger Start

When using the A-D external trigger, set the port shared with the ADT pin to input. The polarity of INT1 interrupt edge also applies to the A-D external trigger. When the INT1 interrupt edge polarity is switched after an external trigger is validated, an A-D conversion may be started.

Resistor ladder

The resistor ladder outputs the comparison voltage by dividing the voltage between VDD and Vss by resistance.

Channel Selector

The channel selector selects one of the ports P33/AIN3-P30/AIN0 and ports P10/AIN4-P13/AIN7, and inputs it to the comparator.

Fig. 25 Structure of A-D control register

Fig. 26 A-D converter block diagram

LCD CONTROLLER/DRIVER

The 38C8 group has the built-in Liquid Crystal Display (LCD) controller/driver consisting of the following.
-240-byte LCD display RAM

- 52 or 68 segment driver
- 16 or 32 common driver
- LCD clock generator
- Timing controller
- Bias controller
- Voltage multiplier
- LCD mode register
- LCD control registers 1, 2

A maximum of 68 segment output pins and 32 common output pins can be used for control of external LCD display.

Fig. 27 Block diagram of LCD controller/driver

LCD Controller/Driver Function

The controller/driver performs the bias control and the time sharing control by the LCD control registers 1, 2 (LC1, LC2), and the LCD mode register (LM). The data of corresponding LCDRAM is output from the segment pins according to the output timing of the common pins.
The 38C8 group has the voltage multiplier only for LCD in addition to LCD controller/driver.

[LCD mode register (LM)] 003916

The LCD mode register is used for setting the LCD controller/driver according to the LCD panel used.

[LCD control register 1 (LC1)] 003716

The LCD control register 1 controls the voltage multiplier and built-in resistance.

[LCD control register 2 (LC2)] 003816

The LCD control register 2 is read-only. Setting " 1 " to bit 5 makes built-in resistance low resistance, and can raise drivability of the segment pins and the common pins.

Table 7 Maximum number of display pixels at each duty ratio

Duty ratio	Maximum number of display pixel
16	16×68 dots $(5 \times 7$ dots + cursor 2 lines $)$
32	32×52 dots $(5 \times 7$ dots + cursor 4 lines)

Note: When executing the STP instruction while operating LCD, execute the STP instruction after prohibiting LCD (set "0" to bit 3 of the LCD mode regsiter).

Note 1: Consumption current can be reduced by restraint of drivability. But an irregular display might be caused according to the panel or the display pattern.

LCD control register 2 (LC2: address 003816)

Note 3: LCDCK is a clock for a LCD timing controller.
Internal clock ϕ is XCIN divided by 2 in the low-speed mode.

* When selecting 32 duty, functions of pins 130 to 142 become COM16 to COM23, and functions of pins 75 to 82 become COM24 to COM31.

Fig. 28 Structure of LCD control register

Voltage Multiplier

When the voltage multiplier is operated after a reference voltage for boosting is applied to LCD power supply VLIN, a voltage that is three times as large as VLIN pin occurs at the VL5 pin. Operate the voltage multiplier after applying a reference voltage for boosting to VLIN.

Bias Control

In the LCD power source pins (VL1-VL5), a proper level is automatically generated in $1 / 32$ and $1 / 16$ duty ratio. The quality of the LCD display can be stabilized by connecting the capacitor for smoothness between Vss and these pins.

Table 8 Bias control and applied voltage to VL1-VL5

Bias value	Voltage value
$1 / 7$ bias	$\mathrm{VL5}=\mathrm{VLCD}$
	$\mathrm{VL4}=6 / 7 \mathrm{VLCD}$
	$\mathrm{VL3}=5 / 7 \mathrm{VLCD}$
	$\mathrm{VL2}=2 / 7 \mathrm{VLCD}$
	$\mathrm{VL} 1=1 / 7 \mathrm{VLCD}$
$1 / 5$ bias	$\mathrm{VL5}=\mathrm{VLCD}$
	$\mathrm{VL4}=4 / 5 \mathrm{VLCD}$
	$\mathrm{VL3}=3 / 5 \mathrm{VLCD}$
	$\mathrm{VL2}=2 / 5 \mathrm{VLCD}$
	$\mathrm{VL} 1=1 / 5 \mathrm{VLCD}$

Note: VLCD is a value which can be supplied to the LCD panel. Set value which is less than maximum ratings to VLCD.

Fig. 29 Example of circuit at each bias

Common Pin and Duty Ratio Control

The common pins (COM0-COM31) to be used are determined by duty ratio.
Select duty ratio by the duty ratio selection bit (bit 0 of the LCD mode register).

Table 9 Duty ratio control and common pins used

Duty ratio	Duty ratio selection bit	Common pins used
16	0	COM0-COM15 (Note)
32	1	COM0-COM31

Note: The SEGo/COM16-SEG7/COM23 pins are used as the SEG0-SEG7.
The SEG67/COM24-SEG60/COM31 pins are used as the SEG67-SEG60.

LCD Display RAM

Addresses 004016 to 012F16 is the designated RAM for the LCD display. When " 1 " are written to these addresses, the corresponding segments of the LCD display panel are turned on.

LCD Drive Timing

The LCDCK timing frequency (LCD drive timing) is generated internally and the frame frequency can be determined with the following equation;

$$
\begin{aligned}
& f(\text { LCDCK })=\frac{\text { (frequency of count source for LCDCK) }}{\text { (divider division ratio for LCD) }} \\
& \text { Frame frequency }=\frac{f(\text { LCDCK })}{\text { (duty ratio) }}
\end{aligned}
$$

LCD display map
When selecting 3 page

Fig. 30 LCD display RAM map

Fig. 31 LCD drive waveform (1/16 duty ratio, 1/5 bias, A type)

Fig. 32 LCD drive waveform ($1 / 32$ duty ratio, $1 / 7$ bias, B type)

RESET CIRCUIT

To reset the microcomputer, RESET pin should be held at an "L" level for $2 \mu \mathrm{~s}$ or more. Then the $\overline{\mathrm{RESET}}$ pin is returned to an " H " level (the power source voltage should be between Vcc (min.) and 5.5 V , and the quartz-crystal oscillator should be stable), reset is released. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.2 Vcc when a power source voltage passes Vcc (min.).

Fig. 33 Reset circuit example

Fig. 34 Reset sequence

		Address	Register contents			Address	Register contents
	Port P0 direction register	000116	0016	(21)	A-D control register	003116	0816
	Port P1 direction register	000316	0016	(22)	A-D conversion register (low-order)	003216	XX ${ }_{16}$
	Port P2 direction register	000516	0016	(23)	A-D conversion register (high-order)	003316	$\mathrm{XX}{ }_{16}$
	Port P3 direction register	000716	0016	(24)	LCD control register 1	003716	0016
	Port P4 direction register	000916	0016	(25)	LCD control register 2	003816	0016
	PULL register A	001616	0016	(26)	LCD mode register	003916	0316
	PULL register B	001716	0016	(27)	Interrupt edge selection regis	ter 003A16	0016
	Serial I/O status register	001916	8016	(28)	CPU mode register	003B16	4C16
	Serial I/O control register	001A16	0016	(29)	Interrupt request register 1	003C16	0016
	UART control register	001B16	E016	(30)	Interrupt request register 2	003D16	0016
) Timer X (low-order)	002016	FF16	(31)	Interrupt control register 1	003E16	0016
	Timer X (high-order)	002116	FF16	(32)	Interrupt control register 2	003F16	0016
	Timer Y (low-order)	002216	FF16	(33)	Processor status register	(PS)	$x\|x\| x\|x\|$ 1 $x \mid x$
	Timer Y (high-order)	002316	FF16	(34)	Program counter	(PCH)	Contents of address FFFD16
	Timer 1	002416	FF16			(PCL)	Contents of address FFFC16
	Timer 2	002516	0116				
	Timer 3	002616	FF16				
	Timer X mode register	002716	0016				
	Timer Y mode register	002816	0016				
	Timer 123 mode register	002916	0016				

Note: The contents of all other register and RAM are undefined after reset, so they must be initialized by software.
x : Undefined

Fig. 35 Internal status at reset

CLOCK GENERATING CIRCUIT

The 38C8 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and Xout (XCIN and XCOUT). RC oscillation is available for XIN-XOUT. Immediately after power on, only the Xin oscillation circuit starts oscillating, and XCIN and XCOUT pins go to high impedance state.

Main Clock

An oscillation circuit by a resonator can be formed by setting the OSCSEL pin is set to " L " level and connecting a resonator between XIN and XoUT. Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and Xout since a feed-back resistor exists onchip. To supply a clock signal externally, make the Xout pin open in the "L" level state of the OSCSEL pin, and supply the clock from the XIN pin. The RC oscillation circuit can be formed by setting the OSCSEL pin to "H" level and connecting a resistor between the XIN pin and the Xout pin. At this time, the feed-back resistor is cut off. The frequency of the RC oscillation changes owing to a parasitic capacitance or the wiring length etc. of the printed circuit board. Do not use the RC oscillation in the usage which the frequency accuracy of the main clock is needed.

Sub-clock

Connect a resonator between XCIN and Xcout. An external feedback resistor is needed between XCIN and Xcout since a feed-back resistor does not exist on-chip. The sub-clock XCIN-Xcout oscillation circuit cannot directly input clocks that are externally generated. Accordingly, be sure to cause an external resonator to oscillate.

Frequency Control

(1) Middle-speed Mode

The internal clock ϕ is the frequency of XIN divided by 8. At reset, this mode is selected.

(2) High-speed Mode

The internal clock ϕ is the frequency of XIN divided by 2.

(3) Low-speed Mode

The internal clock ϕ is the frequency of XCIN divided by 2.
A low-power consumption operation can be realized by stopping the main clock XIN in this mode. To stop the main clock, set bit 5 of the CPU mode register to " 1 ". When the main clock XIN is restarted, set enough time for oscillation to stabilize by programming.

■Notes on clock generating circuit

If you switch the mode between middle/high-speed and low-speed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub clock to stabilize, especially immediately after power on and at returning from stop mode. When switching the mode between middle/high-speed and low-speed, set the frequency on condition that $f(X I N)>3 \cdot f(X C I N)$.

Oscillation Control
 (1) Stop Mode

If the STP instruction is executed, the internal clock ϕ stops at an " H " level, and XIN and XCIN oscillators stop. Timer 1 is set to "FF16" and timer 2 is set to "0116."
Either XIN divided by 16 or XCIN divided by 16 is input to timer 1 as count source, and the output of timer 1 is connected to timer 2 . The bits except bit 4 of the timer 123 mode register are cleared to " 0 ." Set the interrupt enable bits of timer 1 and timer 2 to disabled ("0") before executing the STP instruction.
Oscillator restarts when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 underflows. This allows time for the clock circuit oscillation to stabilize.

(2) Wait Mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level. The states of XIN and XCIN are the same as the state before executing the WIT instruction. The internal clock ϕ restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Fig. 36 RC oscillation circuit

Fig. 37 Resonator circuit

Note: When selecting the Xc oscillation, set the port Xc switch bit to " 1 ".

Fig. 38 Clock generating circuit block diagram

Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)
2: The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wait mode is ended.
3 : Timer and LCD operate in the wait mode.
4 : When the stop mode is ended, a delay of approximately 1 ms occurs automatically by timer 1 and timer 2 in middle-/high-speed mode.
5 : When the stop mode is ended, a delay of approximately 0.25 s occurs automatically by timer 1 and timer 2 in low-speed mode.
6 : Wait until oscillation stabilizes after oscillating the main clock Xis before the switching from the low-speed mode to middle-/high-speed mode.
7 : The example assumes that 4 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. ϕ indicates the internal clock.

Fig. 39 State transitions of system clock

NOTES ON PROGRAMMING
 Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1." After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode
(D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

- To calculate in decimal notation, set the decimal mode flag (D) to "1," then execute an ADC or SBC instruction. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
- In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

Multiplication and Division Instructions

- The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
- The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:

- The data transfer instruction (LDA, etc.)
- The operation instruction when the index X mode flag (T) is " 1 "
- The addressing mode which uses the value of a direction register as an index
- The bit-test instruction (BBC or BBS, etc.) to a direction register
- The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a direction register.
Use instructions such as LDM and STA, etc., to set the port direction registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the $\overline{\text { SRDY }}$ signal, set the transmit enable bit, the receive enable bit, and the $\overline{\text { SRDY }}$ output enable bit to " 1 ". Serial I/O continues to output the final bit from the TxD pin after transmission is completed.

A-D Converter

The comparator is constructed linked to a capacitor. When the conversion speed is not enough, the conversion accuracy might be ruined by the disappearance of the charge. When A-D conversion is performed in the middle-speed mode or the high-speed mode, set $f($ XIN) to at least 500 kHz .
Do not execute the STP or WIT instruction during an A-D conversion because a normal conversion result is not obtained.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the XIN frequency.

At STP Instruction Release

At the STP instruction release, all bits of the timer 12 mode register are cleared.

LCD Control

When using the voltage multiplier, apply prescribed voltage to the VLIN pin in the state in which the LCD enable bit is " 0 ", and set the voltage multiplier enable bit to " 1 ".

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

1. Mask ROM Order Confirmation Form*1
2. Mark Specification Form*2
3. Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.

For the mask ROM confirmation and the mark specifications, refer to the "Mitsubishi MCU Technical Information" Homepage.
*1 Mask ROM Confirmation Forms
http://www.infomicom.mesc.co.jp/38000/38ordere.htm
*2 Mark Specification Forms
http://www.infomicom.mesc.co.jp/mela/markform.htm

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and built-in EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter (PCA7447FP).
The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 40 is recommended to verify programming.

Caution: The screening temperature is far higher than the storage temperature. Never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Fig. 40 Programming and testing of One Time PROM version

ELECTRICAL CHARACTERISTICS

Table 10 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 7.0	V
VI	Input voltage $\begin{aligned} & \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20-\mathrm{P} 27, \\ & \mathrm{P} 30-\mathrm{P} 33, \mathrm{P} 40-\mathrm{P} 47\end{aligned}$		-0.3 to Vcc +0.3	V
VI	Input voltage $\mathrm{C}_{1}, \mathrm{C} 2$		-0.3 to 7.0	V
VI	Input voltage $\overline{\text { RESET, XIN, XCIN }}$		-0.3 to Vcc +0.3	V
VI	Input voltage VLIN	When voltage multiplier is not operated.	-0.3 to 7.0	V
VI	Input voltage VL1, VL2, VL3, VL4, VL5	VL1 \leq VL2 \leq VL3 \leq VL4 \leq VL5	-0.3 to 7.0	V
Vo	$\begin{array}{ll} \hline \text { Output voltage } & \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20-\mathrm{P} 27, \\ & \mathrm{P} 30-\mathrm{P} 33, \mathrm{P} 41-\mathrm{P} 47 \end{array}$		-0.3 to Vcc+0.3	V
Vo	Output voltage $\mathrm{C}_{1}, \mathrm{C} 2, \mathrm{C} 3$		-0.3 to 7.0	V
Vo	Output voltage COM0-COM31, SEG0-SEG67		-0.3 to VL5+0.3	V
Vo	Output voltage XOUT, XCOUT		-0.3 to Vcc+0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Table 11 Recommended operating conditions $\left(\mathrm{Vcc}=2.2\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter				Limits			Unit
					Min.	Typ.	Max.	
Vcc	Power source voltage	High-speed	mode f(XIN)	$\leq \mathrm{MHz}$	4.0	5.0	5.5	V
		High-speed	ode $f($ XIN $)$	$\leq \mathrm{MHz}$	3.0	5.0	5.5	V
		Middle-spe	mode f(X	$\leq 8 \mathrm{MHz}$	2.7	5.0	5.5	V
		Middle-spe	mode (ma	R ROM ver	2.2	5.0	5.5	V
		Middle-spe	mode (O)	Time PRO	2.5	5.0	5.5	V
		Low-speed	ode (mask	ROM version)	2.2	5.0	5.5	V
		Low-speed	ode (One	me PROM	2.5	5.0	5.5	V
Vss	Power source voltage					0		V
VLIN	Power source voltage		VLIN				2.33	V
VL5	Power source voltage		VL5				7.0	V
VIA	Analog input voltage		AN0-AN		Vss		Vcc	V
VIH	"H" input voltage		P00-P07	10-P17, P	0.7 Vcc		Vcc	V
VIH	" H " input voltage		P20-P27	30-P33, P	0.8 Vcc		Vcc	V
VIH	"H" input voltage		RESET		0.8 Vcc		Vcc	V
VIH	" H " input voltage		XIN		0.8 Vcc		Vcc	V
VIL	"L" input voltage		P00-P07	10-P17, P	Vss		0.3Vcc	V
VIL	"L" input voltage		P20-P27	30-P33, P	Vss		0.2 Vcc	V
VIL	"L" input voltage		RESET		Vss		0.2 Vcc	V
VIL	"L" input voltage		XIN		Vss		0.2 Vcc	V
ElOH(peak)	"H" total peak output current		All ports	(Note 1)			-60.0	mA
EloL(peak)	"L" total peak output current		All ports	(Note 1)			60.0	mA
Eloh(avg)	"H" total average output current All ports			(Note 2)			-30.0	mA
EloL(avg)	"L" total average output current All ports			(Note 2)			30.0	mA
IOH (peak)	"H" peak output current		All ports	(Note 3)			-5.0	mA
IOL(peak)	"L" peak output current		All ports	(Note 3)			10.0	mA
IOH(avg)	"H" average output current		All ports	(Note 4)			-2.5	mA
IOL(avg)	"L" average output current		All ports	(Note 4)			5.0	mA
Rosc	Oscillation resistor at selecting RC oscillation				5	8.2	10	k Ω

Notes 1: The total peak output current is the peak value of the peak currents flowing through all the applicable ports.
2: The total average output current is the average value measured over 100 ms flowing through all the applicable ports.
3: The peak output current is the peak current flowing in each port.
4: The average output current is an average value measured over 100 ms .

Table 12 Recommended operating conditions (mask ROM version) ($\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits			Unit
			Min.	Typ.	Max.	
f(CNTRo) f(CNTR1)	Timer X , timer Y input frequency (duty cycle 50\%)				$\mathrm{f}(\mathrm{XIN}) / 2$	MHz
f (XIN)	Main clock input oscillation frequency (Note 1)	High-speed mode $(4.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V})$			8.0	MHz
		High-speed mode $(2.2 \mathrm{~V} \leq \mathrm{Vcc}<4.0 \mathrm{~V})$			(20XVcc-8)/13	MHz
		Middle-speed mode $(2.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V})$			8.0	MHz
$f($ XCIN $)$	Sub-clock input oscillation frequency (Notes 1, 2)			32.768	50	kHz

Notes 1: When the oscillation frequency has a duty cycle of 50%.
2: When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that $f(X \operatorname{CIN})<f(X I N) / 3$.

Table 13 Recommended operating conditions (PROM version) ($\mathrm{Vcc}=2.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits			Unit
			Min.	Typ.	Max.	
f(CNTRo) f(CNTR1)	Timer X , timer Y input frequency (duty cycle 50\%)				$\mathrm{f}(\mathrm{XIN}) / 2$	MHz
$f(X I N)$	Main clock input oscillation frequency (Note 1)	High-speed mode $(4.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V})$			8.0	MHz
		High-speed mode $(2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.0 \mathrm{~V})$			4XVcc-8	MHz
		Middle-speed mode $(2.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V})$			8.0	MHz
$f($ XCIN $)$	Sub-clock input oscillation frequency (Notes 1, 2)			32.768	50	kHz

Notes 1: When the oscillation frequency has a duty cycle of 50%.
2: When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that $f(X C I N)<f(X I N) / 3$.

Table 14 Electrical characteristics ($\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VOH	"H" output voltageP00-P07, P10-P17, P30-P33	$\begin{aligned} & \mathrm{IOH}=-5.0 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$	Vcc-2.0			V
		$\begin{aligned} & \mathrm{IOH}=-1.5 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$	Vcc-0.5			V
		$\begin{aligned} & \mathrm{IOH}=-1.25 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$	Vcc-1.0			V
VOH	"H" output voltage P20-P27, P41-P47	$\begin{aligned} & \mathrm{IOH}=-5.0 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$	Vcc-2.0			V
		$\begin{aligned} & \mathrm{IOH}=-1.5 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$	Vcc-0.5			V
		$\begin{aligned} & \mathrm{IOH}=-1.25 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$	Vcc-1.0			V
Vol	"L" output voltageP00-P07, P10-P17, P30-P33	$\begin{aligned} & \mathrm{IOL}=5.0 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \mathrm{IOL}=1.5 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$			0.5	V
		$\begin{aligned} & \mathrm{IOL}=1.25 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$			1.0	V
VoL	"L" output voltage P20-P27, P41-P47	$\begin{aligned} & \mathrm{IOL}=5.0 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \hline \mathrm{IOL}=1.5 \mathrm{~mA} \\ & \mathrm{VCC}=5.0 \mathrm{~V} \end{aligned}$			0.5	V
		$\begin{aligned} & \mathrm{IOL}=1.25 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$			1.0	V
V T_{+}- $\mathrm{V}_{\text {T- }}$	Hysteresis INT0, INT1, ADT, CNTR0, CNTR1, P20-P27			0.5		V
	Hysteresis ScLK, RxD			0.5		V
V $\mathrm{T}_{+}-\mathrm{V}_{\text {T- }}$	Hysteresis $\overline{\text { RESET }}$			0.5		V
IIH	"H" input current All ports				5.0	$\mu \mathrm{A}$
IIH	"H" input current RESET				5.0	$\mu \mathrm{A}$
IIH	"H" input current XIN			4.0		$\mu \mathrm{A}$
IIL	"L" input current All ports	$\begin{aligned} & \mathrm{VI}=\mathrm{Vss} \\ & \text { Pull-ups "off" } \end{aligned}$			-5.0	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc} \\ & \text { Pull-ups "on" } \\ & \hline \end{aligned}$	-60.0	-120.0	-240.0	$\mu \mathrm{A}$
		$\mathrm{Vcc}=2.2 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ Pull-ups "on"	-5.0	-20.0	-40.0	$\mu \mathrm{A}$
IIL	"L" input current $\overline{\text { RESET }}$	$\mathrm{VI}=\mathrm{VSS}$			-5.0	$\mu \mathrm{A}$
IIL	"L" input current XIN	$\mathrm{VI}=\mathrm{VsS}$		-4.0		$\mu \mathrm{A}$

Table 15 Electrical characteristics ($\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VRam	RAM hold voltage	When clock is stopped	2.0	5.0	5.5	V
ICC	Power source current	$\begin{aligned} & \text { High-speed mode, Vcc }=5.0 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=8.0 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \\ & \hline \end{aligned}$		5.5	11.0	mA
		$\begin{aligned} & \text { Middle-speed mode, Vcc }=5.0 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=8.0 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \end{aligned}$		3.0	6.0	mA
		$\begin{aligned} & \text { Middle-speed mode, Vcc = 3.0 V } \\ & f(\mathrm{XIN})=8.0 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \end{aligned}$		1.0	2.0	mA
		$\begin{aligned} & \text { Low-speed mode, } \mathrm{Vcc}=3.0 \mathrm{~V} \text {, } \\ & \mathrm{f}(\mathrm{XIN})=\text { stopped } \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \end{aligned}$		20.0	40.0	$\mu \mathrm{A}$
		$\begin{aligned} & \text { High-/Middle-speed mode, VCC = } \\ & 5.0 \mathrm{~V}, \\ & \mathrm{f}(\mathrm{XIN})=8.0 \mathrm{MHz} \text { (in WIT state) } \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \\ & \hline \end{aligned}$		0.9	1.8	mA
		Middle-speed mode, Vcc $=3.0 \mathrm{~V}$ $\mathrm{f}(\mathrm{XIN})=8.0 \mathrm{MHz}$ (in WIT state) $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$		0.3	0.6	mA
		Low-speed mode, Vcc $=3.0 \mathrm{~V}$, $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ (in WIT state)		4.5	9.0	$\mu \mathrm{A}$
		All oscillation stopped $\mathrm{Ta}=25^{\circ} \mathrm{C}$, Output transistors "off" (in STP state)		0.1	1.0	$\mu \mathrm{A}$
		All oscillation stopped $\mathrm{Ta}=85^{\circ} \mathrm{C}$, Output transistors "off" (in STP state)			10.0	$\mu \mathrm{A}$
IAD	A-D converter current dissipation	Current increase at A-D converter operated, $\mathrm{f}(\mathrm{XIN})=8.0 \mathrm{MHz}$		0.8	1.6	mA
IL5	VL5 input current (Note)	$\mathrm{VL5}=6.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		3	6	$\mu \mathrm{A}$
FROSC	RC oscillation frequency	ROSC $=8.2 \mathrm{k} \Omega$	1.5	2.5	3.5	MHz

Note: When normal drivability (drivability selection bit $1=$ " 0 ", drivability selection bit $2=$ " 0 ") is selected.

Table 16 A-D converter characteristics
$\left(\mathrm{Vcc}=2.2\right.$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{XIN}) \leq 4 \mathrm{MHz}$, in middle-speed/high-speed mode)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				10	Bits
-	Absolute accuracy (excluding quantization error)	$\mathrm{Vcc}=2.7-5.5 \mathrm{~V}$			± 4	LSB
		$\mathrm{VCC}=2.5-2.7 \mathrm{~V}\left(\mathrm{Ta}=-10\right.$ to $\left.50^{\circ} \mathrm{C}\right)$			± 6	LSB
tconv	Conversion time	$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (Note)	30.5		34	$\mu \mathrm{s}$
IIA	Analog port input current			0.5	5.0	$\mu \mathrm{A}$

Note: When main clock is selected as system clock.
Table 17 Timing requirements 1 ($\mathrm{Vcc}=4.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
tw($\overline{\text { RESET }}$)	Reset input "L" pulse width		2			$\mu \mathrm{s}$
tc(XIN)	Main clock input cycle time (XIN input)		125			ns
twh(Xin)	Main clock input "H" pulse width		45			ns
twL(XIN)	Main clock input "L" pulse width		40			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time		250			ns
twh(CNTR)	CNTRo, CNTR1 input "H" pulse width		105			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width		105			ns
twh(INT)	INT0, INT1 input "H" pulse width		80			ns
twL(INT)	INT0, INT1 input "L" pulse width		80			ns
tc(SCLK)	Serial I/O clock input cycle time	(Note)	800			ns
twH(SCLK)	Serial I/O clock input "H" pulse width	(Note)	370			ns
twL(SCLK)	Serial I/O clock input "L" pulse width	(Note)	370			ns
tsu(RxD-ScLK)	Serial I/O input setup time		220			ns
th(ScLK-RxD)	Serial I/O input hold time		100			ns

Note: When bit 6 of address 001A16 is " 1 ".
Divide this value by four when bit 6 of address 001A16 is " 0 ".

Table 18 Timing requirements $2\left(\mathrm{Vcc}=2.2\right.$ to $4.0 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
tw($\overline{\text { RESET }})$	Reset input "L" pulse width		2			$\mu \mathrm{S}$
tc(XIN)	Main clock input cycle time (XIN input)		125			ns
twh(XIN)	Main clock input "H" pulse width		45			ns
twL(XIN)	Main clock input "L" pulse width		40			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time		900/(Vcc-0.4)			ns
twh(CNTR)	CNTR0, CNTR1 input "H" pulse width		tc(CNTR)/2-20			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width		tc(CNTR)/2-20			ns
twh(INT)	NTo, INT1 input "H" pulse width		230			ns
twL(INT)	NT0, INT1 input "L" pulse width		230			ns
tc(SCLK)	Serial I/O clock input cycle time	(Note)	2000			ns
twh(SCLK)	Serial I/O clock input "H" pulse width	(Note)	950			ns
twL(SCLK)	Serial I/O clock input "L" pulse width	(Note)	950			ns
tsu(RxD-ScLK)	Serial I/O input setup time		400			ns
th(ScLK-RxD)	Serial I/O input hold time		200			ns

Note: When bit 6 of address 001A16 is " 1 ".
Divide this value by four when bit 6 of address 001A16 is " 0 ".

Table 19 Switching characteristics 1 ($\mathrm{Vcc}=4.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
twH(SCLK)	Serial I/O clock output "H" pulse width		tc(ScLK)/2-30			ns
twL(SCLK)	Serial I/O clock output "L" pulse width		tc(ScLK)/2-30			ns
td(ScLk-TxD)	Serial I/O output delay time	(Note 1)			140	ns
tv(ScLK-TxD)	Serial I/O output valid time	(Note 1)	-30			ns
tr(SCLK)	Serial I/O clock output rising time				30	ns
tf(SCLK)	Serial I/O clock output falling time				30	ns
tr (CMOS)	CMOS output rising time	(Note 2)		10	30	ns
tr(CMOS)	CMOS output falling time	(Note 2)		10	30	ns

Notes 1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001 B 16) is " 0 ".
2: The XOUT and Xcout pins are excluded.

Table 20 Switching characteristics 2 ($\mathrm{Vcc}=2.2$ to 4.0 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
twh(SCLK)	Serial I/O clock output "H" pulse width		tc(SCLK)/2-50			ns
twL(SCLK)	Serial I/O clock output "L" pulse width		tc(SCLK)/2-50			ns
td(SCLK-TxD)	Serial I/O output delay time	(Note 1)			350	ns
tv(ScLK-TxD)	Serial I/O output valid time	(Note 1)	-30			ns
tr(SCLK)	Serial I/O clock output rising time				50	ns
tf(SCLK)	Serial I/O clock output falling time				50	ns
tr (CMOS)	CMOS output rising time	(Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time	(Note 2)		20	50	ns

Notes 1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is " 0 ".
2: The XOUT and XCOUT pins are excluded.

Note: When bit 4 of the UART control register (address 001B16) is "1". (N-channel opendrain output mode)

Fig. 41 Circuit for measuring output switching characteristics

CNTR 0, CNTR1

INTo, INT1

$\overline{\text { RESET }}$

XIN

Sclk

Fig. 42 Timing diagram

PACKAGE OUTLINE

144P6Q-A MMP
Plastic 144pin $20 \times 20 \mathrm{~mm}$ body LQFP

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Material
LQFP144-P-2020-0.50	-	1.23	Cu Alloy

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	1.7
A1	0.05	0.125	0.2
A2	-	1.4	-
b	0.17	0.22	0.27
C	0.105	0.125	0.175
D	19.9	20.0	20.1
E	19.9	20.0	20.1
(e)	-	0.5	-
HD	21.8	22.0	22.2
He	21.8	22.0	22.2
L	0.35	0.5	0.65
L1	-	1.0	-
Lp	0.45	0.6	0.75
A3	-	0.25	-
X	-	-	0.08
y	-	-	0.1
θ	0°	-	8°
b2	-	0.225	-
12	0.95	-	-
MD	-	20.4	-
ME	-	20.4	-

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property dage Remert to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property
rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
contaised in these materiats. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means including the Mitsubishi Semiconductor home page (http://www mitsubishichips loss r). When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total syste,
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein
Misubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric
aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

