features

- 116dB CMRR Independent of Gain
- Maximum Offset Voltage: 10 V
- Maximum Offset Voltage Drift: 50nV/º
- Rail-to-Rail Input
- Rail-to-Rail Output
- 2-Resistor Programmable Gain
- Supply Operation: 2.7 V to $\pm 5.5 \mathrm{~V}$
- Typical Noise: $2.5 \mu \mathrm{~V}_{\text {P-p }}$ (0.01Hz to 10 Hz)
- Typical Supply Current: 750 A
- Available in an MS8 and $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ DFN Packages

APPLICATIONS

- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition

DESCRIPTIOn

The $\operatorname{LTC}{ }^{\circledR} 2053$ is a high precision instrumentation amplifier. The CMRR is typically 116 dB with a single or dual 5 V supply and is independent of gain. The input offset voltage is guaranteed below $10 \mu \mathrm{~V}$ with a temperature drift of less than $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. The LTC2053 is easy to use; the gain is adjustable with two external resistors, like a traditional op amp.

The LTC2053 uses charge balanced sampled data techniques to convert a differential input voltage into a single ended signal that is in turn amplified by a zero-drift operational amplifier.

The differential inputs operate from rail-to-rail and the single ended output swings from rail-to-rail. The LTC2053 can be used in single supply applications, as low as 2.7 V . It can also be used with dual $\pm 5.5 \mathrm{~V}$ supplies. The LTC2053 is available in an MS8 surface mount package. For space limited applications, the LTC2053 is available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ dual fine pitch leadless package (DFN).
$\mathbf{\triangle \boldsymbol { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Typical Input Referred Offset vs Input Common Mode Voltage ($\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$)

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Total Supply Voltage (V^{+}to V^{-}) 11V
Input Current \qquad $\pm 10 \mathrm{~mA}$
$\left|\mathrm{V}_{\text {IN }}{ }^{+}-\mathrm{V}_{\text {REF }}\right|$.. 5.5 V
$\left|V_{\text {IN }}{ }^{-}-V_{\text {REF }}\right|$... 5.5 V
Output Short Circuit Duration Indefinite
Operating Temperature RangeLTC2053C$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2053I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2053H $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range MS8 Package $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
DD Package $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER	DD PACKAGE 8-LEAD ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN $T_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$ UNDERSIDE METAL INTERNALLY CONNECTED TO V^{-} (PCB CONNECTION OPTIONAL)	ORDER PART NUMBER*
	LTC2053CMS8 LTC2053IMS8 LTC2053HMS8		LTC2053CDD LTC2053IDD LTC2053HDD
	MS8 PART MARKING		DD PART MARKING
	LTVT LTJY LTAFB		LAEQ

*The temperature grade (C, I, or H) of the LTC2053 in the DFN package is indicated on the shipping container.
Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The o denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{REF}=200 \mathrm{mV}$. Output voltage swing is referenced to V^{-}. All other specifications reference the OUT pin to the REF pin.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Gain Error	$A_{V}=1$	\bullet		0.001	0.01	\%
Gain Nonlinearity	$A_{V}=1$	\bullet		3	12	ppm
Input Offset Voltage (Note 2)	$\mathrm{V}_{\text {CM }}=200 \mathrm{mV}$			-5	± 10	$\mu \mathrm{V}$
Average Input Offset Drift (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	\bullet		-1	$\begin{aligned} & \pm 50 \\ & -2.5 \end{aligned}$	$\begin{aligned} & \mathrm{nV} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Average Input Bias Current (Note 3)	$\mathrm{V}_{\text {CM }}=1.2 \mathrm{~V}$	\bullet		4	10	nA
Average Input Offset Current (Note 3)	$\mathrm{V}_{\text {CM }}=1.2 \mathrm{~V}$	-		1	3	nA
Input Noise Voltage	DC to 10Hz			2.5		$\mu \mathrm{V}_{\mathrm{P} \text { - }}$
Common Mode Rejection Ratio (Notes 4, 5)	$\begin{aligned} & A_{V}=1, V_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, \text { LTC2053C } \\ & A_{V}=1, V_{C M}=0.1 \mathrm{~V} \text { to } 2.9 \mathrm{~V}, \text { LTC2053I } \\ & A_{V}=1, V_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, \text { LTC2053I } \\ & A_{V}=1, V_{C M}=0.1 \mathrm{~V} \text { to } 2.9 \mathrm{~V}, \text { LTC2053H } \\ & A_{V}=1, V_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, \text { LTC2053H } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 105 \\ 105 \\ 95 \\ 100 \\ 90 \end{gathered}$	$\begin{aligned} & 113 \\ & 113 \\ & 113 \end{aligned}$		dB $d B$ $d B$ $d B$ $d B$
2053fa						

ELECRRICRL CHPRPCTERISTICS The o denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{REF}=200 \mathrm{mV}$. Output voltage swing is referenced to \mathbf{V}^{-}. All other specifications reference the OUT pin to the REF pin.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply Rejection Ratio (Note 6)	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 6 V	\bullet	110	116		dB
Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{V}^{-} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}^{-} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 2.85 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.98 \end{aligned}$		V
Output Voltage Swing Low		\bullet			20	mV
Supply Current	$\mathrm{V}_{\text {EN }} \leq 0.5 \mathrm{~V}$, No Load	\bullet		0.75	1	mA
Supply Current, Shutdown	$\mathrm{V}_{\mathrm{EN}} \geq 2.5 \mathrm{~V}$				10	$\mu \mathrm{A}$
EN Pin Input Low Voltage, VIL					0.5	V
$\overline{\text { EN }}$ Pin Input High Voltage, $\mathrm{V}_{\text {IH }}$			2.5			V
$\overline{\overline{E N} \text { Pin Input Current }}$	$\mathrm{V}_{\text {EN }}=\mathrm{V}^{-}$			-0.5	-10	$\mu \mathrm{A}$
Internal Op Amp Gain Bandwidth				200		kHz
Slew Rate				0.2		V/us
Internal Sampling Frequency				3		kHz

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}$, $\mathbf{V}^{-}=\mathbf{O V}$, REF $=\mathbf{2 0 0} \mathbf{m V}$. Output voltage swing is referenced to \mathbf{V}^{-}. All other specifications reference the OUT pin to the REF pin.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Gain Error	$A_{V}=1$	\bullet		0.001	0.01	\%
Gain Nonlinearity	$A_{V}=1$	\bullet		3	10	ppm
Input Offset Voltage (Note 2)	$\mathrm{V}_{\text {CM }}=200 \mathrm{mV}$			-5	± 10	$\mu \mathrm{V}$
Average Input Offset Drift (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	$\bullet \bullet$		-1	$\begin{array}{r} \hline \pm 50 \\ -2.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nV} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Average Input Bias Current (Note 3)	$\mathrm{V}_{\text {CM }}=1.2 \mathrm{~V}$	\bullet		4	10	nA
Average Input Offset Current (Note 3)	$V_{C M}=1.2 \mathrm{~V}$	\bullet		1	3	nA
Common Mode Rejection Ratio (Notes 4, 5)	$\begin{aligned} & A_{V}=1, V_{C M}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC2053C } \\ & A_{V}=1, V_{C M}=0.1 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC2053I } \\ & A_{V}=1, V_{C M}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC2053I } \\ & A_{V}=1, V_{C M}=0.1 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC2053 } \\ & A_{V}=1, V_{C M}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC2053H } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 105 \\ 105 \\ 95 \\ 100 \\ 90 \end{gathered}$	$\begin{aligned} & 116 \\ & 116 \\ & 116 \end{aligned}$		dB $d B$ $d B$ $d B$ $d B$
Power Supply Rejection Ratio (Note 6)	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 6 V	-	110	116		dB
Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{V}^{-} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}^{-} \end{aligned}$		$\begin{aligned} & 4.85 \\ & 4.95 \end{aligned}$	$\begin{aligned} & 4.94 \\ & 4.98 \end{aligned}$		V
Output Voltage Swing Low		\bullet			20	mV
Supply Current	$\mathrm{V}_{\mathrm{EN}} \leq 0.5 \mathrm{~V}$, No Load	\bullet		0.85	1.1	mA
Supply Current, Shutdown	$\mathrm{V}_{\mathrm{EN}} \geq 4.5 \mathrm{~V}$				10	$\mu \mathrm{A}$
EN Pin Input Low Voltage, VIL					0.5	V
EN Pin Input High Voltage, $\mathrm{V}_{1 \mathrm{H}}$			4.5			V
EN Pin Input Current	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}^{-}$			-1	-10	$\mu \mathrm{A}$
Internal Op Amp Gain Bandwidth				200		kHz
Slew Rate				0.2		$\mathrm{V} / \mu \mathrm{s}$
Internal Sampling Frequency				3		kHz

ELECTRICAL CHARACTRISTICS The \bullet denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{REF}=0 \mathrm{~V}$.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Gain Error	$A_{V}=1$	\bullet		0.001	0.01	\%
Gain Nonlinearity	$A_{V}=1$	\bullet		3	10	ppm
Input Offset Voltage (Note 2)	$V_{C M}=0 \mathrm{~V}$			10	± 20	$\mu \mathrm{V}$
Average Input Offset Drift (Note 2)	$\begin{aligned} & \mathrm{T}_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet		-1	$\begin{aligned} & \pm 50 \\ & -2.5 \end{aligned}$	$\begin{aligned} & \mathrm{nV} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} / \mathrm{C} \end{aligned}$
Average Input Bias Current (Note 3)	$V_{C M}=1 \mathrm{~V}$	\bullet		4	10	nA
Average Input Offset Current (Note 3)	$V_{C M}=1 \mathrm{~V}$	\bullet		1	3	nA
Common Mode Rejection Ratio (Notes 4, 5)	$\begin{aligned} & A_{V}=1, V_{C M}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC2053C } \\ & A_{V}=1, V_{C M}=-4.9 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC2053I } \\ & A_{V}=1, V_{C M}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC2053I } \\ & A_{V}=1, V_{C M}=-4.9 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC2053H } \\ & A_{V}=1, V_{C M}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC2053H } \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{gathered} 105 \\ 105 \\ 95 \\ 100 \\ 90 \end{gathered}$	$\begin{aligned} & 118 \\ & 118 \\ & 118 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Power Supply Rejection Ratio (Note 6)	$V_{S}=2.7 \mathrm{~V}$ to 11V	\bullet	110	116		dB
Maximum Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to GND, LTC2053C, LTC2053I } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to GND, LTC2053C, LTC2053I, LTC2053H } \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to GND, LTC2053H } \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & \pm 4.5 \\ & \pm 4.6 \\ & \pm 4.4 \end{aligned}$	$\begin{aligned} & \pm 4.8 \\ & \pm 4.9 \\ & \pm 4.8 \end{aligned}$		V V V
Supply Current	$\mathrm{V}_{\overline{\mathrm{EN}}} \leq-4.5 \mathrm{~V}$, No Load	\bullet		0.95	1.3	mA
Supply Current, Shutdown	$\mathrm{V}_{\mathrm{EN}} \geq 4.5 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\overline{\overline{E N}}$ Pin Input Low Voltage, , ILL					-4.5	V
$\overline{\overline{E N}}$ Pin Input High Voltage, $\mathrm{V}_{\text {IH }}$			4.5			V
$\overline{\text { EN Pin Input Current }}$	$\mathrm{V}_{\text {EN }}=\mathrm{V}^{-}$			-3	-20	$\mu \mathrm{A}$
Internal Op Amp Gain Bandwidth				200		kHz
Slew Rate				0.2		V/ $/ \mathrm{s}$
Internal Sampling Frequency				3		kHz

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: These parameters are guaranteed by design. Thermocouple effects preclude measurement of these voltage levels in high speed automatic test systems. $V_{0 S}$ is measured to a limit determined by test equipment capability.
Note 3: If the total source resistance is less than 10k, no DC errors result from the input bias currents or the mismatch of the input bias currents or the mismatch of the resistances connected to - IN and +IN .

Note 4: The CMRR with a voltage gain, A_{v}, larger than 10 is 120 dB (typ).
Note 5: At temperatures above $70^{\circ} \mathrm{C}$, the common mode rejection ratio lowers when the common mode input voltage is within 100 mV of the supply rails.
Note 6: The power supply rejection ratio (PSRR) measurement accuracy depends on the proximity of the power supply bypass capacitor to the device under test. Because of this, the PSRR is 100% tested to relaxed limits at final test. However, their values are guaranteed by design to meet the data sheet limits.

TYPICAL PGRFORMANCE CHARACTERISTICS

2053 G01

2053 G04

Input Offset Voltage vs Input Common Mode Voltage

053 G07

Input Offset Voltage vs Input Common Mode Voltage

2053 GO2

Input Offset Voltage vs Input
Common Mode Voltage

2053 G05

Input Offset Voltage vs Input Common Mode Voltage

Input Offset Voltage vs Input Common Mode Voltage

2053 G03

Input Offset Voltage vs Input Common Mode Voltage

2053 G06

Input Offset Voltage vs Input

 Common Mode Voltage

TYPICAL PGRFORMANCE CHARACTERISTICS

Error Due to Input Rs vs Input Common Mode ($\mathrm{C}_{\mathrm{IN}}<100 \mathrm{pF}$)

2053 G10
Error Due to Input R Mismatch vs Input Common Mode
($\mathrm{C}_{\mathrm{IN}}<100 \mathrm{pF}$)

2053 G13

Error Due to Input R $\mathbf{S}_{\mathbf{S}}$ vs Input Common Mode ($\mathrm{C}_{\mathrm{IN}}>1 \mu \mathrm{~F}$)

2053G16

Error Due to Input Rs vs Input Common Mode ($\mathrm{C}_{\text {IN }}<100 \mathrm{pF}$)

2053 G11
Error Due to Input Rs Mismatch vs Input Common Mode
($\mathrm{C}_{\mathrm{IN}}<100 \mathrm{pF}$)

2053 G14
Error Due to Input R_{S} vs Input Common Mode ($\mathrm{C}_{\mathrm{IN}}>1 \mu \mathrm{~F}$)

2053 G17

Error Due to Input R $\mathbf{R}_{\mathbf{S}}$ vs Input Common Mode ($\mathrm{C}_{\mathrm{IN}}<100 \mathrm{pF}$)

2053 G12
Error Due to Input RSMismatch vs Input Common Mode ($\mathrm{C}_{\mathrm{IN}}<100 \mathrm{pF}$)

2053 G15
Error Due to Input R_{S} vs Input Common Mode ($\mathrm{C}_{\mathrm{IN}}>1 \mu \mathrm{~F}$)

2053 G18
2053fa

TYPICAL PGRFORmANCE CHARACTERISTICS

Error Due to Input Rs Mismatch vs Input Commom Mode ($\mathrm{C}_{\text {IN }}>1 \mu \mathrm{~F}$)

2053 G19

2053 G22
Gain Nonlinearity, G = 1

Error Due to Input RS Mismatch
vs Input Commom Mode
($\mathrm{C}_{\text {|N }}>1 \mu \mathrm{~F}$)

2053 G20
$V_{0 S}$ vs REF (Pin 5)

Gain Nonlinearity, $\mathrm{G}=10$

Error Due to Input RS Mismatch vs Input Commom Mode ($\mathrm{C}_{\text {IN }}>1 \mu \mathrm{~F}$)

2053 G21

2053 G24
CMRR vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Input Voltage Noise Density vs
Frequency

Output Voltage Swing vs Output Current

2053 G3
Low Gain Settling Time vs Settling Accuracy

Input Referred Noise in 10Hz Bandwidth

Output Voltage Swing vs Output Current

2053 G32

Settling Time vs Gain

Input Referred Noise in 10Hz Bandwidth

2053 G30

Supply Current vs Supply Voltage

2053 G33
Internal Clock Frequency vs Supply Voltage

2053 G36

PIn functions

$\overline{\mathrm{EN}}$ (Pin 1): Active Low Enable Pin.
-IN (Pin 2): Inverting Input.
+IN (Pin 3): Noninverting Input.
\mathbf{V}^{-}(Pin 4): Negative Supply.
REF (Pin 5): Voltage Reference ($\mathrm{V}_{\text {REF }}$) for Amplifier Output.

RG (Pin 6): Inverting Input of Internal Op Amp. With a resistor, R2, connected between the OUT pin and the RG pin and a resistor, R1, between the RG pin and the REF pin, the $D C$ gain is given by $1+\mathrm{R} 2 / \mathrm{R} 1$.
OUT (Pin 7): Amplifier Output.

$$
V_{\text {OUT }}=\operatorname{GAIN}\left(V_{+ \text {IN }}-V_{-I N}\right)+V_{\text {REF }}
$$

\mathbf{V}^{+}(Pin 8): Positive Supply.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

Theory of Operation

The LTC2053 uses an internal capacitor (C_{S}) to sample a differential input signal riding on a DC common mode voltage (see Block Diagram). This capacitor's charge is transferred to a second internal hold capacitor (C_{H}) translating the common mode of the input differential signal to that of the REF pin. The resulting signal is amplified by a zero-drift op amp in the noninverting configuration. The RG pin is the negative input of this op amp and allows external programmability of the DC gain. Simple filtering can be realized by using an external capacitor across the feedback resistor.

Input Voltage Range

The input common mode voltage range of the LTC2053 is rail-to-rail. However, the following equation limits the size of the differential input voltage:

$$
\mathrm{V}^{-} \leq\left(\mathrm{V}_{+} \mathrm{IN}^{-}-\mathrm{V}_{-\mathrm{IN}}\right)+\mathrm{V}_{\mathrm{REF}} \leq \mathrm{V}^{+}-1.3
$$

Where $\mathrm{V}_{+ \text {IN }}$ and $\mathrm{V}_{- \text {IN }}$ are the voltages of the +IN and -IN pins respectively, $\mathrm{V}_{\text {REF }}$ is the voltage at the REF pin and V^{+} is the positive supply voltage.

For example, with a 3 V single supply and a OV to 100 mV differential input voltage, $\mathrm{V}_{\text {REF }}$ must be between OV and 1.6V.

± 5 Volt Operation

When using the LTC2053 with supplies over 5.5 V , care must be taken to limit the maximum difference between any of the input pins (+IN or -IN) and the REF pin to 5.5V; if not, the device will be damaged. For example, if rail-torail input operation is desired when the supplies are at $\pm 5 \mathrm{~V}$, the REF pin should be $0 \mathrm{~V}, \pm 0.5 \mathrm{~V}$. As a second example, if V^{+}is 10 V and V^{-}and REF are at 0 V , the inputs should not exceed 5.5 V .

APPLICATIONS InfORMATION

Settling Time

The sampling rate is 3 kHz and the input sampling period during which C_{S} is charged to the input differential voltage $V_{\text {IN }}$ is approximately $150 \mu \mathrm{~s}$. First assume that on each input sampling period, C_{S} is charged fully to V_{IN}. Since C_{S} $=C_{H}(=1000 \mathrm{pF})$, a change in the input will settle to N bits of accuracy at the op amp noninverting input after N clock cycles or $333 \mu \mathrm{~s}(\mathrm{~N})$. The settling time at the OUT pin is also affected by the settling of the internal op amp. Since the gain bandwidth of the internal op amp is typically 200 kHz , the settling time is dominated by the switched capacitor front end for gains below 100 (see Typical Performance Characteristics).

Input Current

Whenever the differential input $V_{I N}$ changes, C_{H} must be charged up to the new input voltage via C_{s}. This results in an input charging current during each input sampling period. Eventually, C_{H} and C_{S} will reach $V_{I N}$ and, ideally, the input current would go to zero for DC inputs.

In reality, there are additional parasitic capacitors which disturb the charge on C_{S} every cycle even if $\mathrm{V}_{\text {IN }}$ is a $D C$ voltage. For example, the parasitic bottom plate capacitor on C_{S} must be charged from the voltage on the REF pin to the voltage on the -IN pin every cycle. The resulting input
charging current decays exponentially during each input sampling period with a time constant equal to $\mathrm{R}_{S} \mathrm{C}_{s}$. If the voltage disturbance due to these currents settles before the end of the sampling period, there will be no errors due to source resistance or the source resistance mismatch between -IN and +IN. With $\mathrm{R}_{\mathbf{S}}$ less than 10k, no DC errors occur due to this input current.
In the Typical Performance Characteristics section of this data sheet, there are curves showing the additional error from non-zero source resistance in the inputs. If there are no large capacitors across the inputs, the amplifier is less sensitive to source resistance and source resistance mismatch. When large capacitors are placed across the inputs, the input charging currents described above result in larger DC errors, especially with source resistor mismatches.

Power Supply Bypassing

The LTC2053 uses a sampled data technique and therefore contains some clocked digital circuitry. It is therefore sensistive to supply bypassing. For single or dual supply operation, a 0.1μ F ceramic capacitor must be connected between Pin $8\left(\mathrm{~V}^{+}\right)$and $\operatorname{Pin} 4\left(\mathrm{~V}^{-}\right)$with leads as short as possible.

SINGLE SUPPLY, UNITY GAIN

DUAL SUPPLY

$-5 \mathrm{~V}<\mathrm{V}_{-I N}<5 \mathrm{~V}$ AND $\left|\mathrm{V}_{-I N}-\mathrm{V}_{\text {REF }}\right|<5.5 \mathrm{~V}$
$-5 \mathrm{~V}<\mathrm{V}_{+ \text {IN }}<5 \mathrm{~V}$ AND $\left|\mathrm{V}_{+I N}-\mathrm{V}_{\text {REF }}\right|<5.5 \mathrm{~V}$
$-5 \mathrm{~V}<\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{REF}}<3.7 \mathrm{~V}$
$V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right) V_{D}+V_{\text {REF }}$

Figure 1

PACKAGE DESCRIPTION

MS8 Package
 8-Lead Plastic MSOP

(Reference LTC DWG \# 05-08-1660)

DD Package
8-Lead Plastic DFN (3mm $\times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED

TYPICAL APPLICATIONS

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1167	Single Resistor Gain Programmable, Precision Instrumentation Amplifier	Single Gain Set Resistor: $\mathrm{G}=1$ to 10,000, Low Noise: $7.5 \mathrm{nV} \sqrt{\mathrm{Hzz}}$
LTC2050	Zero-Drift Operation Amplifier	SOT-23 Package
LTC2051	Dual Zero-Drift Operational Amplifier	MS8 Package
LTC6800	Single Supply, Zero Drift, Rail-to-Rail Input and Output Instrumentation Amplifier	MS8 Package, 100 $\mu \mathrm{V}$ Max Vos, $250 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Max Drift

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

