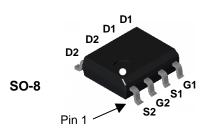
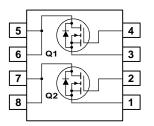
September 2004

FDS6910

Dual N-Channel Logic Level PowerTrench[®] MOSFET


General Description


These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

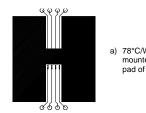
Features

- $\mbox{ } \bullet \mbox{ } 7.5 \mbox{ A}, \mbox{ } 30 \mbox{ V}. \qquad R_{\text{DS}(\text{ON})} = 13 \mbox{ } m\Omega \ @ \mbox{ } V_{\text{GS}} = 10 \mbox{ } V \\ R_{\text{DS}(\text{ON})} = 17 \mbox{ } m\Omega \ @ \mbox{ } V_{\text{GS}} = 4.5 \mbox{ } V \\ \mbox{ } \end{array}$
- Fast switching speed
- Low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol		Parameter		Ratings	Units
V _{DSS}	Drain-Sour	ce Voltage		30	V
V _{GSS}	Gate-Source	Gate-Source Voltage		± 20	V
l _D	Drain Curre	ent – Continuous	(Note 1a)	7.5	A
		– Pulsed		20	
PD	Power Diss	ipation for Single Operation	ר (Note 1a)	1.6	W
			(Note 1b)	1.0	
			(Note 1c)	0.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			–55 to +150	
Therma	I Charac	teristics			
$R_{\theta JA}$	Thermal Re	Resistance, Junction-to-Ambient (Note 1a)		78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case (Note 1)		e (Note 1)	40	
Packag	e Markin	g and Ordering I	nformation		
Device Marking		Device	Reel Size	Tape width	Quantity
Device			13"	12mm	2500 units

©2004 Fairchild Semiconductor Corporation


FDS6910

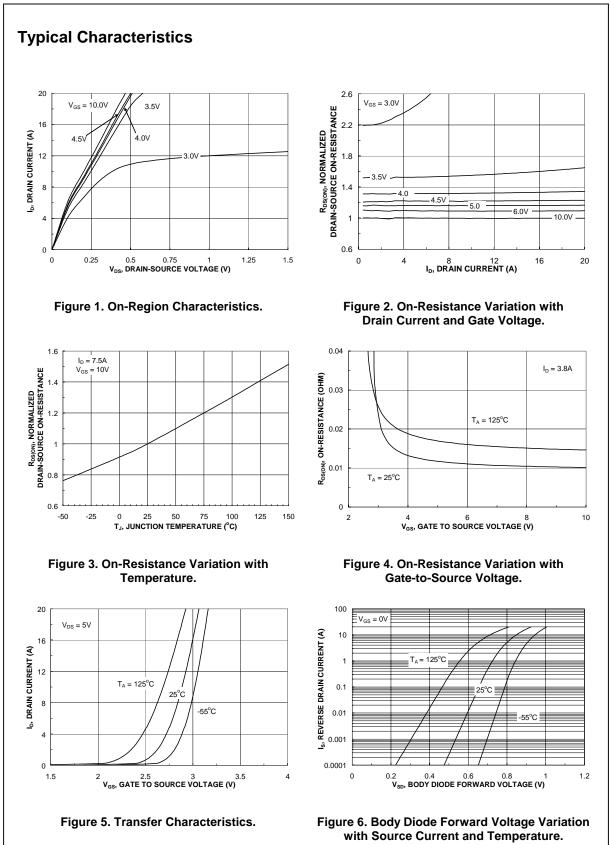
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics		1	1		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		28		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current				1 10	μA
I _{GSS}	Gate-Source Leakage	$V_{GS}=\pm 20~V,~V_{DS}=0~V$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 250 \ \mu A$	1	1.8	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-4.7		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{c} V_{\rm GS} = 10 \ V, I_D = 7.5 \ A \\ V_{\rm GS} = 4.5 \ V, I_D = 6.5 \ A \\ V_{\rm GS} = 10 \ V, \ I_D = 7.5 \ A, T_J = 125^{\circ} C \end{array} $		10.6 13 14.5	13 17 20	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	20			А
g fs	Forward Transconductance	$V_{DS} = 5 V$, $I_{D} = 7.5 A$		36		S
Dynamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		1130		pF
Coss	Output Capacitance	f = 1.0 MHz		300		pF
C _{rss}	Reverse Transfer Capacitance			100		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		2.4		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$		9	18	ns
tr	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		5	10	ns
t _{d(off)}	Turn-Off Delay Time			26	42	ns
t _f	Turn–Off Fall Time	7		7	14	ns
Q _{g(TOT)}	Total Gate Charge at Vgs=10V			17	24	nC
Qg	Total Gate Charge at Vgs=5V	$V_{DD} = 15 V$, $I_D = 7.5 A$,		9	13	nC
Q _{gs}	Gate–Source Charge			3.1		nC
Q _{gd}	Gate-Drain Charge	1		2.7		nC

				oted		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sc	urce Diode Characteristics an	nd Maximum Ratings				
Is	Maximum Continuous Drain–Source Diode Forward Current				1.3	Α
	Duala Courses Diada Ferruand	$V_{GS} = 0 V$, $I_S = 1.3 A$ (Note 2)			1.2	V
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.3 A$ (Note 2)				
V _{SD}		$V_{GS} = 0.0$, $I_S = 1.3$ A (Note 2) $I_F = 7.5$ A, $d_{IF}/d_t = 100$ A/µs		24		nS

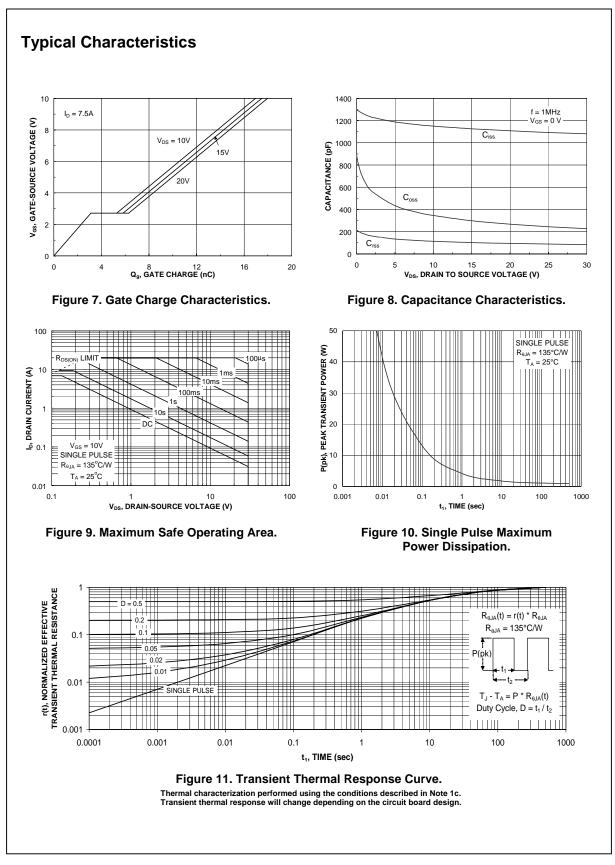
Notes:

 R_{6JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{6JC} is guaranteed by design while R_{6CA} is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper ουνου 1111 c) 135° minin 0000


c) 135°C/W when mounted on a minimum mounting pad.

Scale 1 : 1 on letter size paper


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

FDS6910 Rev B(W)

FDS6910

FDS6910

FDS6910

FDS6910 Rev B(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GTO™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics [™]	TinyLogic®
E ² CMOS [™]	I²C™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Serie		OPTOLOGIC [®]	µSerDes™	UltraFET [®]
Across the board. Around the world.™ The Power Franchise [®] Programmable Active Droop™		OPTOPLANAR™ PACMAN™ POP™	SILENT SWITCHER [®] SMART START™ SPM™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 113

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.