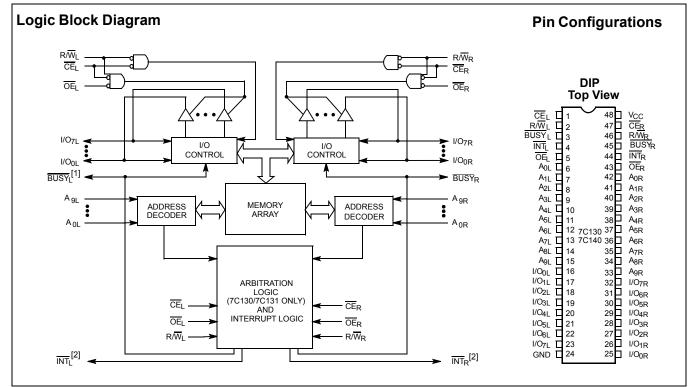


CY7C130/CY7C131 CY7C140/CY7C141

Features

- · True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- 1K x 8 organization
- 0.65-micron CMOS for optimum speed/power
- High-speed access: 15 ns
- Low operating power: I_{CC} = 110 mA (max.)
- · Fully asynchronous operation
- · Automatic power-down
- Master CY7C130/CY7C131 easily expands data bus width to 16 or more bits using slave CY7C140/CY7C141
- BUSY output flag on CY7C130/CY7C131; BUSY input on CY7C140/CY7C141
- · INT flag for port-to-port communication
- Available in 48-pin DIP (CY7C130/140), 52-pin PLCC, 52-pin Pb-Free PLCC, 52-Pin TQFP and 52-Pin Pb-Free TQFP.


1K x 8 Dual-Port Static RAM

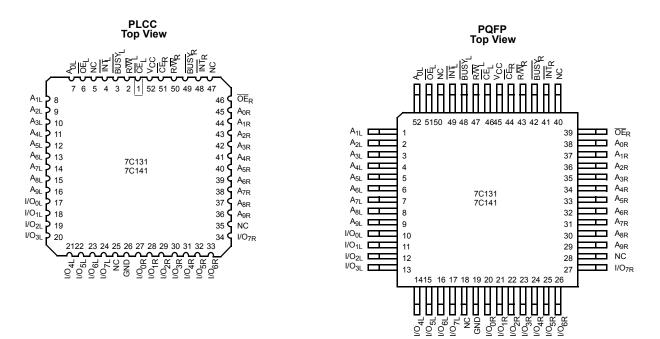
Functional Description

The CY7C130/CY7C131/CY7C140 and CY7C141 are high-speed CMOS 1K by 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C130/ CY7C131 can be utilized as either a standalone 8-bit dual-port static RAM or as a master dual-port RAM in conjunction with the CY7C140/CY7C141 slave dual-port device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.

Each port has independent control pins; chip enable (\overline{CE}), write enable (R/W), and output enable (\overline{OE}). Two flags are provided on each port, BUSY and INT. BUSY signals that the port is trying to access the same location currently being accessed by the other port. INT is an interrupt flag indicating that data has been placed in a unique location (3FF for the left port and 3FE for the right port). An automatic power-down feature is controlled independently on each port by the chip enable (CE) pins.

The CY7C130 and CY7C140 are available in 48-pin DIP. The CY7C131 and CY7C141 are available in 52-pin PLCC, 52-pin Pb-free PLCC, 52-pin PQFP and 52-pin Pb-free PQFP.

Note:


CY7C130/CY7C131 (Master): <u>BUSY</u> is open drain output and requires pull-up resistor CY7C140/CY7C141 (Slave): BUSY is input.

2. Open drain outputs: pull-up resistor required.

Ś

Pin Configuration (continued)

Pin Definitions

Left Port	Right Port	Description
CEL	CE _R	Chip Enable
R/WL	R/W _R	Read/Write Enable
OEL	OE _R	Output Enable
A _{0L} -A _{11/12L}	A _{0R} -A _{11/12R}	Address
I/O _{0L} -I/O _{15/17L}	I/O _{0R} -I/O _{15/17R}	Data Bus Input/Output
INTL	INT _R	Interrupt Flag
BUSYL	BUSYR	Busy Flag
V _{CC}		Power
GND		Ground

Selection Guide

			7C131-25 ^[3] 7C141-25	7C130-30 7C131-30 7C140-30 7C141-30	7C130-35 7C131-35 7C140-35 7C141-35	7C130-45 7C131-45 7C140-45 7C141-45	7C130-55 7C131-55 7C140-55 7C141-55	Unit
Maximum Access Tim	ie	15	25	30 35 45 55		ns		
Maximum Operating	Com'l/Ind	190	170	170	120	120	110	mA
Current	Military				170	170	120	
Maximum Standby	Com'l/Ind	75	65	65	45	45	35	mA
Current	Military				65	65	45	

Shaded areas contain preliminary information.

Note:

3. 15 and 25-ns version available only in PLCC/PQFP packages.

Maximum Ratings^[4]

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Potential (Pin 48 to Pin 24)	–0.5V to +7.0V
DC Voltage Applied to Outputs	
in High Z State	–0.5V to +7.0V
DC Input Voltage	–3.5V to +7.0V
Output Current into Outputs (LOW)	20 mA

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%
Military ^[5]	–55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[6]

					1-15 ^[3] 11-15	7C131 7C14	0-30 ^[3] -25,30 40-30 -25,30	7C13 [/] 7C14	0-35,45 1-35,45 0-35,45 1-35,45	7C13 7C14	30-55 31-55 40-55 41-55	
Parameter	Description	Test Condition	ns	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = –	4.0 mA	2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW	I _{OL} = 4.0 mA			0.4		0.4		0.4		0.4	V
	Voltage	I _{OL} = 16.0 mA ^[7]			0.5		0.5		0.5		0.5	
V _{IH}	Input HIGH Voltage			2.2		2.2		2.2		2.2		V
V _{IL}	Input LOW Voltage				0.8		0.8		0.8		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-5	+5	-5	+5	-5	+5	-5	+5	μA
I _{OZ}	Output Leakage Current	GND <u>≤</u> V _O ≤ V _{CC} , Output Disabled		-5	+5	-5	+5	-5	+5	-5	+5	μA
I _{OS}	Output Short Circuit Current ^[8, 9]	V _{CC} = Max., V _{OUT} = GND	V _{CC} = Max., V _{OUT} = GND		-350		-350		-350		-350	mA
I _{CC}	V _{CC} Operating	$\overline{CE} = V_{IL},$	Com'l		190		170		120		110	mA
	Supply Current	Outputs Open, f = f _{MAX} ^[10]	Mil						170		120	
I _{SB1}	Standby Current	CE _L and CE _{B 2}	Com'l		75		65		45		35	mA
	Both Ports, TTL Inputs	$V_{IH}, f = f_{MAX}^{[10]}$	Mil						65		45	
I _{SB2}	Standby Current	$\overline{CE}_{L} \text{ or } \overline{CE}_{R} \ge V_{IH},$	Com'l		135		115		90		75	mA
	One Port, TTL Inputs	Active Port Outputs Open, f = f _{MAX} ^[10]	Mil						115		90	
I _{SB3}	Standby Current	Both Ports CE ₁ and	Com'l		15		15		15		15	mA
	Both Ports, CMOS Inputs		Mil						15		15	

Shaded areas contain preliminary information.

Note:

4. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.

5. T_A is the "instant on" case temperature

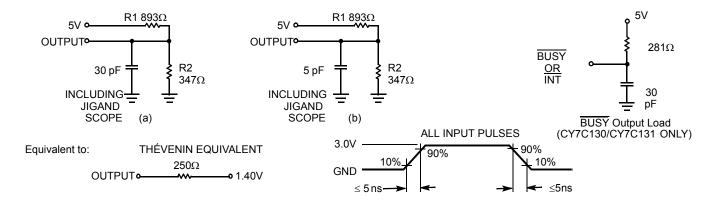
6. See the last page of this specification for Group A subgroup testing information.

7. BUSY and INT pins only.

8. Duration of the short circuit should not exceed 30 seconds.

9. This parameter is guaranteed but not tested.

10. At f=f_{MAX}, address and data inputs are cycling at the maximum frequency of read cycle of 1/t_{RC} and using AC Test Waveforms input levels of GND to 3V.


Electrical Characteristics Over the Operating Range^[6] (continued)

				7C13 ² 7C14	1-15 ^[3] 1-15	7C131 7C14)-30 ^[3] -25,30 0-30 -25,30	7C13 ² 7C14	0-35,45 1-35,45 0-35,45 1-35,45	7C13 7C14	80-55 81-55 80-55 81-55	
I _{SB4}	Standby Current One Port, CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline \underline{One} & Port \ \overline{CE}_L \ or \\ \hline CE_R \geq V_{CC} - 0.2V, \\ \hline V_{IN} \geq V_{CC} - 0.2V, \\ or \ V_{IN} \leq 0.2V, \\ Active \ Port \ Outputs \\ \hline Open, \\ f = f_{MAX}^{[10]} \end{array}$	Com'l Mil		125		105		85 105		70 85	mA

Capacitance^[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	15	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0V	10	pF

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[6,11]

			1-15 ^[3] 41-15	7C1: 7C1	0-25 ^[3] 31-25 40-25 41-25	7C1: 7C1	30-30 31-30 40-30 41-30	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	Ē							
t _{RC}	Read Cycle Time	15		25		30		ns
t _{AA}	Address to Data Valid ^[12]		15		25		30	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[12]		15		25		30	ns
t _{DOE}	OE LOW to Data Valid ^[12]		10		15		20	ns
t _{LZOE}	OE LOW to Low Z ^[9,13, 14]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[9,13, 14]		10		15		15	ns
t _{LZCE}	CE LOW to Low Z ^[9,13, 14]	3		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[9,13, 14]		10		15		15	ns
t _{PU}	CE LOW to Power-Up ^[9]	0		0		0		ns
t _{PD}	CE HIGH to Power-Down ^[9]		15		25		25	ns
WRITE CYC	LE ^[15]		1	1	•			
t _{WC}	Write Cycle Time	15		25		30		ns
t _{SCE}	CE LOW to Write End	12		20		25		ns
t _{AW}	Address Set-Up to Write End	12		20		25		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	R/W Pulse Width	12		15		25		ns
t _{SD}	Data Set-Up to Write End	10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	R/\overline{W} LOW to High $Z^{[14]}$		10		15		15	ns
t _{LZWE}	R/\overline{W} HIGH to Low $Z^{[14]}$	0		0		0		ns

Shaded area contains preliminary information.

Note:

Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified I_{OL}/I_{OH}, and 30-pF load capacitance.
AC Test Conditions use V_{OH} = 1.6V and V_{OL} = 1.4V.

At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZCE} is less than t_{LZCE}.
At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZCE} is less than t_{LZCE}.
At t_{LZCE}, t_{LZWE}, t_{HZOE}, t_{LZCE}, t_{LZCE}, t_{HZCE} and t_{HZWE} are tested with C_L = 5pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
The internal write time of the memory is defined by the overlap of CS LOW and RW LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range^[6,11] (continued)

			1-15 ^[3] 41-15	7C1 7C1	0-25 ^[3] 31-25 40-25 41-25	7C1 7C1	30-30 31-30 40-30 41-30	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
BUSY/INTER								
t _{BLA}	BUSY LOW from Address Match		15		20		20	ns
t _{BHA}	BUSY HIGH from Address Mismatch ^[16]		15		20		20	ns
t _{BLC}	BUSY LOW from CE LOW		15		20		20	ns
t _{BHC}	BUSY HIGH from CE HIGH ^[16]		15		20		20	ns
t _{PS}	Port Set Up for Priority	5		5		5		ns
t _{WB} ^[17]	R/W LOW after BUSY LOW	0		0		0		ns
t _{WH}	R/W HIGH after BUSY HIGH	13		20		30		ns
t _{BDD}	BUSY HIGH to Valid Data		15		25		30	ns
t _{DDD}	Write Data Valid to Read Data Valid		Note 18		Note 18		Note 18	ns
t _{WDD}	Write Pulse to Data Delay		Note 18		Note 18		Note 18	ns
INTERRUPT	TIMING							
t _{WINS}	R/W to INTERRUPT Set Time		15		25		25	ns
t _{EINS}	CE to INTERRUPT Set Time		15		25		25	ns
t _{INS}	Address to INTERRUPT Set Time		15		25		25	ns
t _{OINR}	OE to INTERRUPT Reset Time ^[16]		15		25		25	ns
t _{EINR}	CE to INTERRUPT Reset Time ^[16]		15		25		25	ns
t _{INR}	Address to INTERRUPT Reset Time ^[16]		15		25		25	ns

Shaded area contains preliminary information.

Note:

16. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.

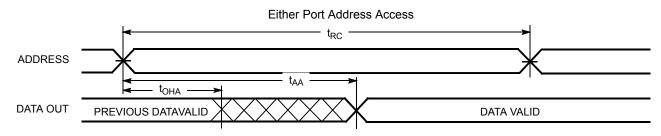
17. CY7C140/CY7C141 only.

18. <u>A write</u> operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH. Port B's address is toggled.

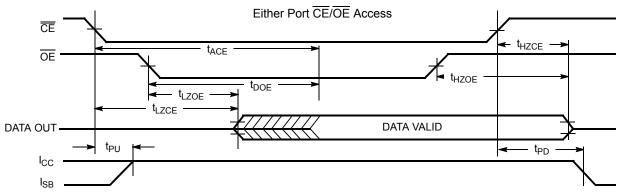
CE for Port B is toggled. R/W for Port B is toggled during valid read.

Switching Characteristics Over the Operating Range^[6,11]

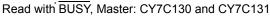
		7C13 7C14	30-35 31-35 40-35 41-35	7C13 7C13 7C14 7C14	1-45 7C13 0-45 7C14		31-55 40-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E		•					
t _{RC}	Read Cycle Time	35		45		55		ns
t _{AA}	Address to Data Valid ^[12]		35		45		55	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[12]		35		45		55	ns
t _{DOE}	OE LOW to Data Valid ^[12]		20		25		25	ns
t _{LZOE}	OE LOW to Low Z ^[9,13, 14]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[9,13, 14]		20		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[9,13, 14]	5		5		5		ns

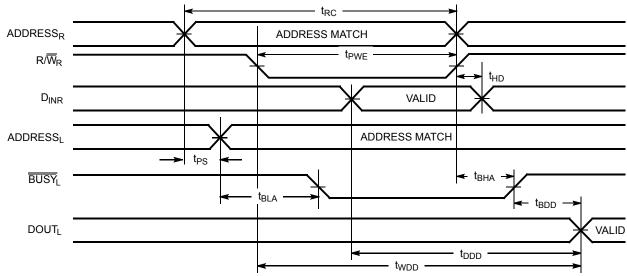

Switching Characteristics Over the Operating $Range^{[6,11]}$ (continued)

		7C13 7C14	7C130-35 7C131-35 7C140-35 7C141-35		7C130-45 7C131-45 7C140-45 7C141-45		7C130-55 7C131-55 7C140-55 7C141-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{HZCE}	CE HIGH to High Z ^[9,13, 14]		20		20		25	ns
t _{PU}	CE LOW to Power-Up ^[9]	0		0		0		ns
t _{PD}	CE HIGH to Power-Down ^[9]		35		35		35	ns
WRITE CYC	LE ^[15]	I	•	1			1	
t _{WC}	Write Cycle Time	35		45		55		ns
t _{SCE}	CE LOW to Write End	30		35		40		ns
t _{AW}	Address Set-Up to Write End	30		35		40		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	R/W Pulse Width	25		30		30		ns
t _{SD}	Data Set-Up to Write End	15		20		20		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	R/\overline{W} LOW to High $Z^{[14]}$		20		20		25	ns
t _{LZWE}	R/W HIGH to Low Z ^[14]	0		0		0		ns
BUSY/INTEI	RRUPT TIMING	•	-					•
t _{BLA}	BUSY LOW from Address Match		20		25		30	ns
t _{BHA}	BUSY HIGH from Address Mismatch ^[16]		20		25		30	ns
t _{BLC}	BUSY LOW from CE LOW		20		25		30	ns
t _{BHC}	BUSY HIGH from CE HIGH ^[16]		20		25		30	ns
t _{PS}	Port Set Up for Priority	5		5		5		ns
t _{WB} ^[17]	R/W LOW after BUSY LOW	0		0		0		ns
t _{WH}	R/W HIGH after BUSY HIGH	30		35		35		ns
t _{BDD}	BUSY HIGH to Valid Data		35		45		45	ns
t _{DDD}	Write Data Valid to Read Data Valid		Note 18		Note 18		Note 18	ns
t _{WDD}	Write Pulse to Data Delay		Note 18		Note 18		Note 18	ns
INTERRUPT	TIMING			•		•		•
t _{WINS}	R/W to INTERRUPT Set Time		25		35		45	ns
t _{EINS}	CE to INTERRUPT Set Time		25	1	35		45	ns
t _{INS}	Address to INTERRUPT Set Time		25	1	35		45	ns
t _{OINR}	OE to INTERRUPT Reset Time ^[16]		25	1	35		45	ns
t _{EINR}	CE to INTERRUPT Reset Time ^[16]		25		35		45	ns
t _{INR}	Address to INTERRUPT Reset Time ^[16]		25		35	1	45	ns



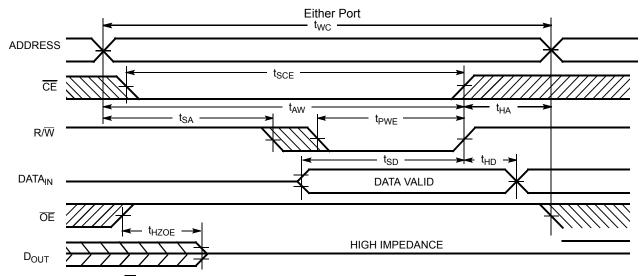
Switching Waveforms


Read Cycle No. 1^[19, 20]

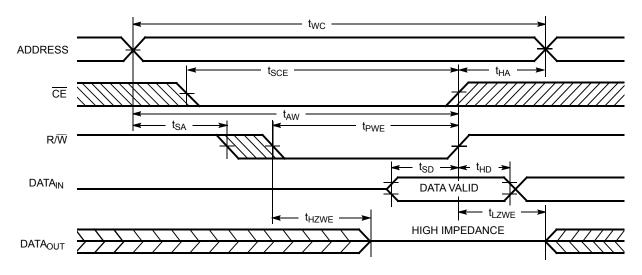


Read Cycle No. 2^[19, 21]

Read Cycle No. 3^[20]



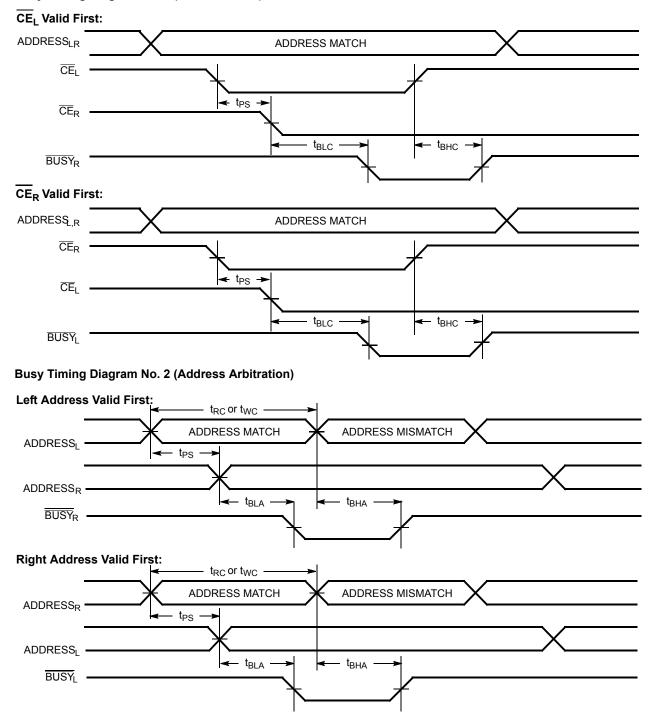
Notes:19. R/W is HIGH for read cycle.20. Device is continuously selected, $\overline{CE} = V_{IL}$ and $\overline{OE} = V_{IL}$.21. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

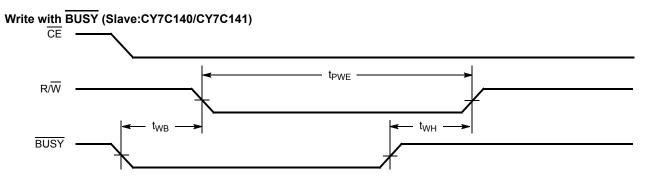
Write Cycle No. 1 (OE Three-States Data I/Os—Either Port^[15, 22]

Write Cycle No. 2 (R/W Three-States Data I/Os—Either Port)^[16, 23]

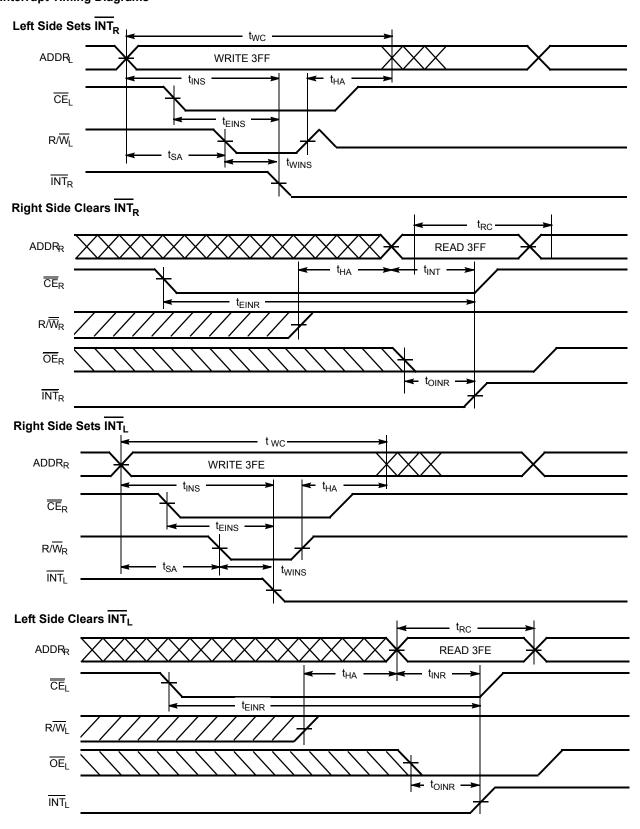


Notes:

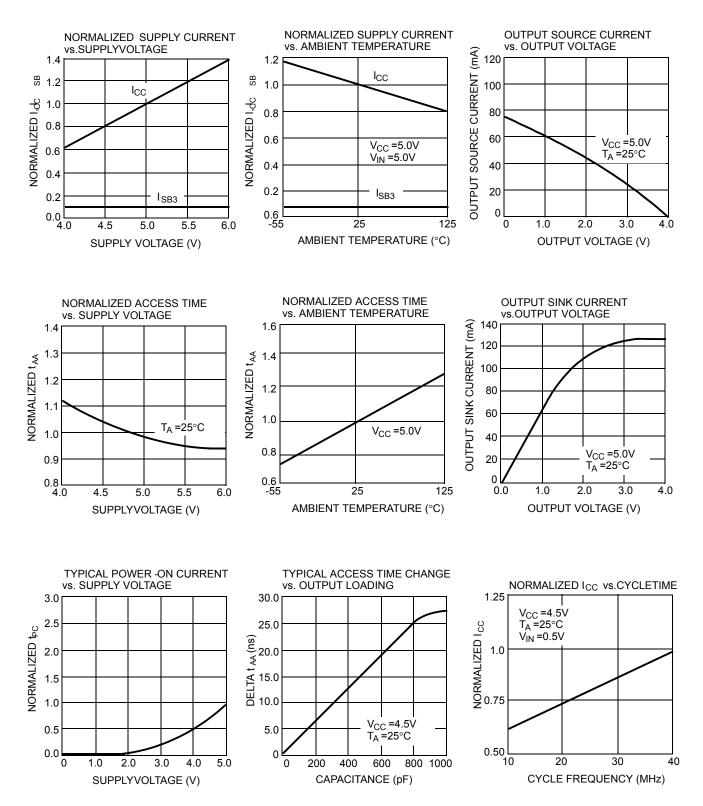
22. If OE is LOW during a RW controlled write cycle, the write pulse width must be the larger of t_{PWE} or t_{HZWE} + t_{SD} to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD} . 23. If the \overline{CE} LOW transition occurs simultaneously with or after the $R\overline{W}$ LOW transition, the outputs remain in the high-impedance state.



Switching Waveforms (continued) Busy Timing Diagram No. 1 (CE Arbitration)



Switching Waveforms (continued) Busy Timing Diagram No. 3



Switching Waveforms (continued) Interrupt Timing Diagrams

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range	
30	CY7C130-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C130-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
35	CY7C130-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C130-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C130-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
45	CY7C130-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C130-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C130-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
55	CY7C130-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C130-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C130-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
15	CY7C131-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C131-15JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier		
	CY7C131-15NC	N52	52-Pin Plastic Quad Flatpack		
25	CY7C131-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C131-25JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier		
	CY7C131-25NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C131-25NXC	N52	52-Pin Lead-Free Plastic Quad Flatpack		
	CY7C131-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C131-25NI	N52	52-Pin Plastic Quad Flatpack		
30	CY7C131-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C131-30NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C131-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
35	CY7C131-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C131-35NC	N52	52-Pin Plastic Quad Flatpack	-	
	CY7C131-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C131-35NI	N52	52-Pin Plastic Quad Flatpack	-	
45	CY7C131-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C131-45NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C131-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C131-45NI	N52	52-Pin Plastic Quad Flatpack		
55	CY7C131-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C131-55JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier		
	CY7C131-55NC	N52	52-Pin Plastic Quad Flatpack	1	
	CY7C131-55NXC	N52	52-Pin Lead-Free Plastic Quad Flatpack	1	
	CY7C131-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C131-55JXI	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier	1	
	CY7C131-55NI	N52	52-Pin Plastic Quad Flatpack	1	

Shaded areas contain preliminary information.

Ordering Information (continued)

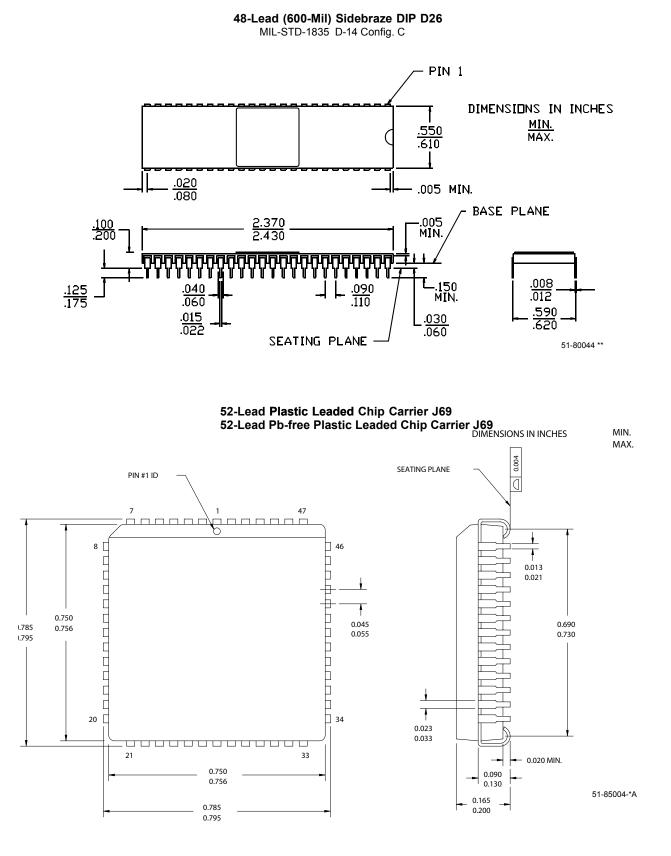
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range	
30	CY7C140-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
35	CY7C140-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C140-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
45	CY7C140-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C140-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
55	CY7C140-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C140-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
15	CY7C141-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-15NC	N52	52-Pin Plastic Quad Flatpack		
25	CY7C141-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-25JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier		
	CY7C141-25NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-25NI	N52	52-Pin Plastic Quad Flatpack		
30	CY7C141-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-30NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
35	CY7C141-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-35NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-35NI	N52	52-Pin Plastic Quad Flatpack		
45	CY7C141-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-45NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-45NI	N52	52-Pin Plastic Quad Flatpack	1	
55	CY7C141-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-55NC	N52	52-Pin Plastic Quad Flatpack	1	
	CY7C141-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-55NI	N52	52-Pin Plastic Quad Flatpack	1	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

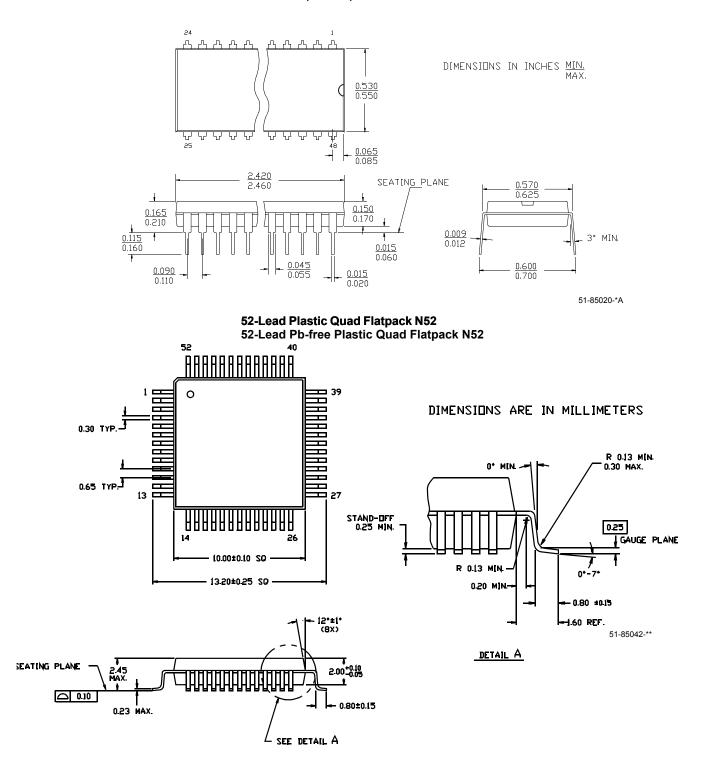
DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3
I _{SB3}	1, 2, 3
I _{SB4}	1, 2, 3


Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
t _{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	·
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11
BUSY/INTERRUPT TIMING	i
t _{BLA}	7, 8, 9, 10, 11
t _{BHA}	7, 8, 9, 10, 11
t _{BLC}	7, 8, 9, 10, 11
t _{BHC}	7, 8, 9, 10, 11
t _{PS}	7, 8, 9, 10, 11
t _{WINS}	7, 8, 9, 10, 11
t _{EINS}	7, 8, 9, 10, 11
t _{INS}	7, 8, 9, 10, 11
t _{OINR}	7, 8, 9, 10, 11
t _{EINR}	7, 8, 9, 10, 11
t _{INR}	7, 8, 9, 10, 11
BUSY TIMING	
t _{WB} ^[24]	7, 8, 9, 10, 11
t _{WH}	7, 8, 9, 10, 11
t _{BDD}	7, 8, 9, 10, 11

Note: 24. CY7C140/CY7C141 only.


Package Diagrams

Package Diagrams (continued)

48-Lead (600-Mil) Molded DIP P25

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-06002 Rev. *C

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C130/CY7C131/CY7C140/CY7C141 1K x 8 Dual-Port Static RAM Document Number: 38-06002				
REV.	ECN NO.	lssue Date	Orig. of Change	Description of Change
**	110169	09/29/01	SZV	Change from Spec number: 38-00027 to 38-06002
*A	122255	12/26/02	RBI	Power up requirements added to Maximum Ratings Information
*В	236751	See ECN	YDT	Removed cross information from features section
*C	325936	See ECN	RUY	Added pin definitions table, 52-pin PQFP package diagram and Pb-free information

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.