1. DIODY I TYRYSTORY

Wykaz oznaczeń parametrów technicznych

```
pojemność diody przy określonym napięciu wstecznym
C<sub>r</sub>
          stosunek pojemności
dim
          krytyczna stromość narastania prądu przewodzenia
 f
          czestotliwość pomiarowa
 Ip
          prąd przewodzenia
          szczytowy prąd przewodzenia
Im
          powtarzalny szczytowy prąd przewodzenia
IFRM
          niepowtarzalny szczytowy prąd przewodzenia
IFSM
          prad bramki
IG
          przełączający prąd bramki
IGT
          średni prąd wyprostowany
I_0
          prąd wsteczny
I_{\mathbf{R}}
          prąd ustalenia charakterystyki wstecznej
irr
          skuteczny prąd przewodzenia tyrystora
I_{\mathbf{T}}
          średni prąd przewodzenia tyrystora
IT/AV/
          skuteczny prąd przewodzenia tyrystora
· IT/RMS/
ITSM
          niepowtarzalny szczytowy prąd przewodzenia tyrystora
          prąd stabilizacji
 I_{\mathbf{Z}}
          moc całkowita
 Ptot
          straty mocy w bramce
 PCM
 Q
          dobroć
          rezystancja dynamiczna w kierunku przewodzenia
 rp
          rezystancja szeregowa
 rs
          rezystancja dynamiczna
 \mathbf{r}_{\mathbf{Z}}
          rezystancja obciążeńia
 R<sub>T.</sub>
 t
           czas trwania impulsu
 tamb
           temperatura otoczenia
 tcase
          temperatura obudowy
 t,
           temperatura złacza
           czas narastania
 tr
           czas ustalania charakterystyki wstecznej
 trr
 UD
           napięcie blokowania
           powtarzalne szczytowe napięcie blokowania
 UDRM
```

 $\mathbf{U}_{\mathrm{DSN}}$ niepowtarzalne szczytowe napięcie blokowania

Up napięcie przewodzenia diody

U_{FSM} niepowtarzalne szczytowe napięcie przewodzenia

U_{GT} napięcie przełączające bramki

U_R napiecie wsteczne

U_{RM} szczytowe napięcie wsteczne

URRM powtarzalne szczytowe napięcie wsteczne

 $\mathbf{U}_{\mathbf{RSM}}$ niepowtarzalne szczytowe napięcie wsteczne

 $\mathbf{U}_{\mathrm{RWM}}$ szczytowe napięcie wsteczne pracy

Um napięcie przewodzenia tyrystora

U_Z napięcie stabilizacji

 α_{UF} współczynnik temperatury stabilizacji w kierunku przewodzenia

 $lpha_{
m HZ}$ współczynnik temperaturowy napięcia stabilizacji

9 kat przepływu

KOD BARWNY NA OBUDOWACH DIOD

OBUDOWA CE 02 /DO 35/

dioda	pa	sek /	pasek
BAVP 10	brązowy	/	czarny
BAVP 17	brązowy	/	fioletowy
BAVP 18	brązowy	/	szary
BAVP 19	brązowy	/	biały
BAVP 20	czerwony	/	czarny
BAVP 21	czerwony	/	brązowy
BAVP 61	żółty	/	brązowy
BAVP 94	brązowy		
BAVP 94A	czerwony		
BAVP 95	pomarańczo	wy	

diody Zenera BZP 683

BAVP 95A zólty

kolor pasków	1	2	3	4
czarny	-	0	x 1	
brązowy	1	1		
czerwony	2	2		, ,
pomarańczowy	3	3		
ż ółt y	4	4		
zielony	5	5		
niebieski	6	6		
fioletowy	7	7		
szary	8	8	e e	
biały	9	9	x10 ⁻¹	
złoty	-	_	-	5% /C/
arebrny	-	-	-	10% /D/

OBUDOWA CE 31

dioda pasek / pasek
BA 157 czerwony / czerwony
BA 158 biały / biały
BA 159 zielony / zielony
dioda trzy paski
BYP 150 - 50 niebieskie
- 100 szare
- 225 żółte
- 300 zielone
- 400 czerwone
- 600 białe
•

0100	a		pase	9K
BYP	401		50	szary
		-	100	czerwony
		-	200	żółty
		-	400	zielony
,		_	600	niebieski
		-	800	biały
		-1	000	brązowy

OBUDOWA CE 37 /SOD 23/

dio	la	kropka	/	pasek
BA	182	czerwona		
BA	152P	czarna		
BAP	794	żółta		
BAP	794A	pomarańczowa	a	
BAP	795	niebieska		
BAP	795A	szara		
вв	105A	biała		
BB	105B	biała	1	biały
BB	105G	zielona		
ВВ	109	czarna	/	żółtv

1.1. Diody prostownicze

		Opnqo-	·		16				<u>.</u>			× i	 ¥				8				<u>.</u>				CE 30xx		# R
	····					 			E E			M)	۹	CE	S	CB	S				ビ			- ,	CE 3		GE 3
		Zasto- sowa-	1		15				ď			ъ	ซ	, o	o	U	o				œ				で		ਰ
tyczne	ķ	UR	V		14	50	8	225	8	00 0	9			24	80	12 k	16 k	20	8	500	004	009	00 00 00	1000			
skterys 25°C/	I _R przy		Ψπ	пах	13				ī			750	750	10	10	10	10				ž.		-4-		2005	—,	2005/
try chara/tamb=		I _F	A		12				,			5	ις.	0,01	0,01	0,01	0,0				-				z.		Z.
Parametry charakterystyczne /tamb = 25°C/	U _F przy		V	max	11	 						1,25	1,25	30	30	37,5	50				1,1				1,25		1,25
	t atm		స్త		10	-40 +85	•	:	-40 +85	:	-40 ••• +85	-40 +125	-40 +125	-55 +150	-55 +150	-55 +150	-55 +150	-55 +150	-55 +150	:	:	:	:	-55 +150		•	
= 25°c/	tamb		్రం		6	-40 +85	40 +85	-40 ••• +85	-40 +85	•	-40 ••• +85	-40 +100	-40 +100	-40 +100	-40 +100	-40 +100	-40 +100	-40 +100	-40 +100	-40 +100	-40 +100	:	-40 *** *100	-40 +100			
tamb =	t,		ပ္	пах	8				150			150	150	100	100	100	100	`			150			,	150		150
graniczne /t _{amb}		4	SEI SEI		7							9	ę	10	10	10	10				10				10		10
	przy	*	္မ		9							150	150												150		150
Parametry	IFSM		V	TRX	5				72			40	40	-	-	-	-				2				9		9
Pare	τ°	/IF/	W A	mex	4		,		4,0		-	/1,2/	/1,2/	/0000/	/00000/	/00000/	/0,008/				-	•	•		/2/1/		/5/1/
,	URSM	/URREM/	A	max	3	9	500	350	400	009	008	/350/	/009/	/2 k/	/8 k/	/12 k/	/16 k/	100	500	400	9	800	1000	1300	/350/		/009/
	URWM		Λ	max	2	 20	9	225	300	400	009	300	900					50	9	200	400	009	800	1000	38		200
		Oznaczenie			1	BYP 150-50	BYP 150-100	BYP 150-225	BYP 150-300	BYP 150-400	BYP 150-600	BXP 155-350*	BYP 155-600*	BYP 350-2 k	BYP 350-8 k	BYP 350-12 k	BYP 350-16 k'	BYP 401-50	BYP 401-100	BYP 401-200	BYP 401-400	BYP 401-600	BYP 401-800	BYP 401-1000	BYP 671-350*	BYP 671-350 R	BYP 671-600* BYP 671-600 R

16	GE 11	CE 11	CE 11	CE 11	CE 11
15	م	۵	۵	م	م
14	50	100	300	500	600
13	50	50	50	50	50
12	5	72	. 2	ī.	5
11	1,3	1,3	1,3	1,3	1,3/
10	-55 +100	-55 +100	-55 +100	-55 +100	-55 +100
6	-40 +85	-40 ••• +85	-40 +85	-40 ••• +85	-40 ••• +85
80	150	150	150	150	150
7	10	0	10	01	01
9 ,	150	150	150	150	150
5	09	09	09	09	9
4	π ,	2	ĸ	, ín	5
3	80	160	200	800	1000
2	50	100	300	200	909
-	BYP 680-50 BYP 680-50 R	BYP 680-100 BYP 680-100 R	BYP 680-300 BYP 680-300 R	EYP 680-500 BYP 680-500 R	BYP 680-600 BYP 680-600 R

x nowe uruchomienia

xx obudows w opracowantu $^{1/t}_{amb} = +85^{\circ}c$

> c powielacze napięcia do OTV d szybkie przełączniki

b prostowniki do 5 A a prostowniki do 1 A

2/ tamb = +100°C

1.2. Diody prostownicze specjalne

	Obudowa		-		14	CB 11	GB 11	CB 11	CB 11	CB 11	CB 34	CB 34	CE 34	CB 34	CE 31	CE 34	CB 34
-	Zastoso-	wanie			13	a 3	as .	a\$	ct)	q	م	م	م	م	م	م	م
ozne	Æ	쁄	Λ		12	50	100	300	200	900	20	100	500	004	009	800	1000
Parametry charakterystyczne /tamb = 25°C/	I _R przy	-	Aut	max	11	50	50	50	50	50	ĸ	Į,	ľ.	8	iv.	ĸ	5
etry cha/ /tamb =	Æ.	ħ	A		10	ĸ	į	īv	īv	, IV	+	+	-	-	-	-	-
Param	vzrd _T U		Λ	щаХ	6	1,93	۴,3	1,3	1,3	1,3	1,1	1,1	1,1	<u> </u>	£,	1,1	11,1
	f ₄		ວຸ	Mex	8	150	150	150	150	150	175	1.75	175	175	175	175	175
		4	84		7	0	10	10	10	10	9	10	10	9	9	10	10
Parametry graniczne /t _{amb} = 25°C/	przy	تد	၁၀		9	150	150	150	150	150						·	
niczne /t _a	IFSM Pr		A	max	5	09	09	09	09	9	50	50	50	5	20	50	50
etry gra	Io		A	max	4	٦	īV	īV	ĸ	r.	-	-	-	-	-	-	+
Param	URSM		۸	max	3	80	160	200	800	1000	100	200	004	909	800	1000	1300
!	URWM		Λ	X 8 E	2	50	100	300	300	900	20	100	200	004	909	800	1 000
	Oznaczenie	wyropn			-	BYAP 80-50 BYAP 80-50 R	BYAP 80-100 R	BYAP 80-300 BYAP 80-300 R	BYAP 80-500 BYAP 80-500 R	BYAP 80-600 BYAP 80-600 R	BYBP 10-50	BYBP 10-100	BYBP 10-200	BYBP 10-400	BYBP 10-600	BYBP 10-800	BYBP 10-1000

a prostowniki do 5 A b prostowniki do 1 A

Obudo-888888 8 *** 5 5 37 9 4 21 CECE CE G G E GE CB Œ Za-sto-sowa-nie 20 **8 2 2 2 8** 44 0 0 0 0 0 0 0 סססס 0 ď t O 5 MHZ 00000 0 $\mathbf{u}_{\mathbf{R}}$ 400 00 0000 0 przy Parametry charakterystyczne $/t_{amb}$ = 25°C/ 2,5 2,1 1,6 1,5 α α α α α α α α α pP 17 nax Ω. Q N N **4** 01 01 01 a U.R 16 5 5 5 **5** przy 503/ 503/ 503/ 503/ ŗ 80 max 15 500 300 500 UR U Rmex U Rmex U Rmex U Rmex U Rmex 10 400 600 1000 20 50 20 25 30 50 50 20 20 2 8 $^{\mathrm{I}}_{\mathrm{R}}$ 됩 <u>س</u> 8 8 2228 8 8 8 8 8 8 25 8 30 20 10 10 9 88888 - 8 50 20 5 12 I F Æ przy 0,855 0,855 0,855 -0,92 пах 1,0 - 4 - 4 - 4 UF 0,62 0,82 min 0 7.0 40 ... +100 +175 +100 +100 +175 +150 +175 t stg :: : : :: : : 04-9 9 40 **-**55 -40 -55 -55 65 65 65 **-**65 -55 **≖**55 +100 + + + + 100 + + + 100 +125 +125 +100 +125 +125 +125 +125 +125 *** +125 *** +125 +125 +125 +125 tamb Parametry graniczne / $t_{amb} = 25^{\circ}$ C/ 94 6 04-40 9 4 041 -55 -55 -55 -55 -55 -55 -40 -40 200 DBX 175 125 125 125 125 150 150 200 175 175 175 175 150 Ptot 150 max 200 200 200 200 200 150 200 500 400 400 400 400 200 200 看 2000¹/ 2000¹/ 2000¹/ I FRIM /500/ /600/ 250 250 250 250 250 /500/ /200/ DBX 2x200 2x200 450 450 450 225 200 Ħ 001 004 004 001 001 Ħ TB3 2x80 8 8 300 200 200 200 200 200 200 8 5 15 /400/ /600/ /1000/ URM / max 33 23 4 25 25 2 8 2 max 50 20 50 100 150 20 22 25 30 50 50 50 ୍ 2 N 2 75 BAE 795 BAE 795 R BAE 895⁴/ BAV 704/x 264/x 794 794 795 795 BAVP 10
BAVP 17
BAVP 18
BAVP 19
BAVP 20
BAVP 21 99 152 157 158 159 182 5 BAYP BAP BAP BAP BAR ***

18

1.3. Diody przełączające

	
21	CE 02 CE 02 CE 02 CE 02
20	ט ט ט ט
19	
18 19 20	0000
11	0400
16 17	وووو
14 15	0000
1 1	25 30 - 50 50
11 12 13	100 50 50
12	30 50 10
11	1,0 0,7 1,0 0,81
2	
6	+125 -65 +200 +125 -65 +200 +125 -65 +200 +125 -65 +200
8	-55 +125 -55 +125 -55 +125
7	200
9	500 500 500 500
4	450 450 450 450
	200
	25 55 55
[25 30 50 50
	BAYP 94 BAYP 94 A BAYP 95

a układy przełączające /głowice UHF/

b układy prostownicze

c układy hybrydowe

d szybkie układy przełączające

e układy przełączające i prostownicze małej mocy

f układy przełączające wysokiej jakości

4/ duodioda
x nowe uruchomienia

 $R_{\rm L} = 100\Omega$;

3/ przy $I_F = 30 \text{ mA}$; $I_R = 30 \text{ mA}$;

2/ przy I = 10 mA; R_{L} = 100 Ω ; $t_{\mathbf{rr}}$ = 1 mA

1/ przy $f_p = 50 \text{ Hz}$; t = 10 ms

T 1.4. Diody przełączające specjalne

DAME STATE ST		Param	Parametry graniczne /tamb	п	25°c/		Parametry	charakter	Parametry charakterystyczne /tamb	'tamb = 25°G/	٥/ ا	-	
The column The		늄	H	Ptot	ct.	l	ZZ		zy	tr	Ę.		
V max max max max max max max pp 1 2 3 4 5 6 7 8 9 10 11 11 11 571/1 4400 400 150 1,3 1 5000 400 500 7/18/1 11	Oznaczenie Wyrobu	/unam/	/LFM/				H		Ľ			Zastoso- wanie	Obudowa
		A	mA	WIE.	ပ	Δ	шA	nA	۸	ag	PF		
1 2 3 4 5 6 7 8 9 10 11 1 571/ 591/ 591/ 591/ 591/ 591/ 591/ 591/ 59		max	H8X	nax	max	пах		тах		нах	/typ/ max		
571/ 501/ 501/ 501/ 500/ 500/ 500/ 500/ 50	-	2	. 3	4	5	9	7	8	σ	10	4	12	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,												
591/ 7/1000/ 7/	BAAP 57'	/400/		<u> </u>	150	1,3	•	2000	004	200	/2/	αij	CE 31
591/1 /1000/ 400 150 1,3 1 5000 1000 500 /1,6// 95 50 2x800/2x200/ 175 175 1 50 100 50 2 2 95 50 80/2x00/ 150 175 1 50 100 50 2 2 2 95 50 80/2x00/ 150 175 1 50 100 50 2 3 4 4<	BAAF 581	/009/			150	٦,٠	•	2000	909	200	/4,8/	a	CE 34
95 50 2x80 /2x200 200 175 1 50 100 50 2 2 95 50 80/200/ 150 175 1 50 100 50 2 2 51 75 400 500 200 1 10 25 20 4 4 95 50 200 500 200 1 10 25 20 4 4 95 50 200 500 200 1 50 50 2 2 95 50 2x80 200 1 50 50 2 2 2 95 50 2x80 1 1 50 100 50 2 2 10 72x80 2x80 2x80 1 1 2 2 2 10 100 2x80 2x80 2x80 2x80 2 2 2	BAAP 591/	/1000/			150	1,3	•	2000	1000	200	/9'W		CE 34
95 50 80/200/ 150 175 1 50 100 50 2 2 51 75 80/200/ 150 175 1 50 100 50 2 51 75 100 500 200 1 10 25 20 4 4 4 95 50 200 200 1 50 50 2	BABE 95	20	2x80 /2x200/	200	175	+	20	100	50	N	~	م	CB 45
55 R 50 80/200/ 150 175 1 50 100 500 2 2 4 4 4 51 75 200 500 200 1 10 25 20 4 4 4 95 50 200 200 1 50 1 50 2	BACE 95	50	80/200/	150	175	*	50	100	50	8	8	م	CB 45
61 75 100 500 200 1 10 25 20 4 4 95 50 200 1 50 50 50 2 2 95 50 2x80 200 175 1 50 100 50 2 2 10 50 2x200 175 1 50 100 50 4 2,5 10 7250 400 175 1 100 100 502/ 5 20 7250/ 400 175 1 100 100 502/ 5 21 200 7250/ 400 175 1 100 100 502/ 5 21 200 7250/ 400 175 1 100 100 502/ 5	95	50	80/200/	150	175	-	30	100	20	83	8	م	CE 45
95 50 200, 450, 750 500 200 1 50 50 50 2 2 2 95 50 2x80, 7x200, 7x20, 7x200, 7x	BACP 61		100	500	200	τ-	10	25	20	4	4	0	CE 02
95 50 2x80 / 2x200/ 200 175 1 50 100 50 2 2 2 10 50 300 500 200 0,92 100 100 50²/ 5,5 19 100 7250/ 400 175 1 100 100 50²/ 5 20 150 7250/ 400 175 1 100 150 50²/ 5 21 200 7250/ 400 175 1 100 100 50²/ 5	BACP 95	30	200/450/	200	200	-	0.00	50	သို့	N .	N	o	CB 05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BADE 95	50	2x80 /2x200/	200	175	-	50	100	20	N	N	م	CB 45
19 100 /250/ 400 175 1 100 100 50^{2} 5 5 20 150 /250/ 400 175 1 100 100 50^{2} 5 5 21 200 /250/ 400 175 1 100 100 200 50^{2} 5	BAFF 10	50	300	500	200	0,92	100	100	20	4	2,5	ø.	CE 02
150 /250/ 400 175 1 100 100 150 502/ 5	BAFP 19	100	/250/	00†	175	-	100	100	100	505/	2	ଫ	CE 02
21 .200 /250/ 400 175 1 100 100 200 50 ² / 5	BAFP 20	150	/250/	004	175	-	100	100	150	505/	2	rd	CE 05
	BAFP 21	.200	/250/	007	175	~	100	3	500	505/	1 00	ਚ	CB 02

a szybkie układy prostownicze

 $^2/~t_{\rm TT}$ przy Ip = I_R = 30 mA, $R_{\rm L}$ = 100 Ω , $t_{\rm rT}$ = 3 mA tr. przy Ip = IR = 10 mA, 1rr = 1 mA 1/ $I_{FRM} \le 2 \text{ A przy } f = 50 \text{ Hz}, \text{ t = 10 ms}$

b układy hybrydowe o szybkie przelgozniki, modulatory, dekodery

d przelączniki

e układy przelączające wysokiej jakości

1.5. Diody stabilizacyjne

					ŕΤ		
	مهر الربطال				11	CE 35	CE 35
	Zastoso-	wanie			10	układy sta-	ograniczenia napięcia
,	Á2	u_{R}	Λ		6	9	9
umb = 25°C,	I _R przy	-	γπ	max	8	ç	-
Parametry charakterystyczne $/t_{amb} = 25^{\circ}C/$		α _{UF}	10-4/°C	жеш	7	150	-25
y charakte	Ip. = 5 mA	r Fr	c	шах	9	20	30
Parametr	H.	UF	Λ	пах		1,65	2,3
				min	5	1,45	2,0
_{amb} = 25°c/		μ Το	၁၀	max	4	150	150
raniczne /t		N. P.	Δ	пах	3	9	9
Parametry graniczne /tamb = 25°C/		βŁ, H	Αщ	max	2	50	50.
		wyrobu			1	BAP 811	BAP 812

K 1.6. Stabilistory (diody Zenera)

		-nqo	TOWB		18	2		.,								70															
		Zasto-			17	Pad v CE	stabi-	1 ogra-	nicza-	piecia					-,- -																
	Γ			Γ	╀┤		10 L	1	ă	걾																					-
	rzy	zI	ā		19	ŗ	`								-																_
/5 _c	α _{UZ} przy		10-4/°C	typ/max/	15		+5,0	+5,5	0.69+	+6,5	+7,0	+7,0	+7,5	+7,5	+8,0	+8,0	+80	+8,5	+8,5	+8,5	0.6+	0.6+	+5,5	+6,5	+7,0	+7,5	+B ₉ 0	+8+5	+8,5	0.6+	0.6+
, = 25°c/	$\mathbf{r}_{\mathbf{Z}}$		Ç	Bex	14		• 0	10	15	15	50	30	30	35	40	55	55	58	80	80	90	96	10	15	ዴ	40	55	8	8	8	8
ne /tamb				max	13		7,9	8,7	9.6	10,6	11,6	12,7	14,1	15,6	17,1	19,1	21,2	23,3	25,6	28,9	,32	35	2,6	7	13,4	16,5	50	24,4	30	33	36,3
erystycz	n _z		Δ	mom	12		7,5	8,2	1,6	0	-	12	13	15	16	18	50	22	2.4	27	30	33	8,2	10	12	15	18	22	27	30	33
Parametry charakterystyczne /t _{amb}				min	11		7,0	7,7	8,5	9,4	10,4	11,4	12,4	13,8	15,3	16,8	18,8	20,8	22,8	25,1	28	31	7,3	8,8	10,7	t	16	19,6	24,1	23	29,7
netry	przy	ᅜ	Ą		10	0																									
Para	J. E.		۵	шах	6	2,5									-			•													
	y.	U _R	Λ		8		1,5	~	<u>س</u>	4,5	4,5	6,5	6,5		11	12	14	15	16	18	50	22		4,5	6,5	=======================================	12	15	18	20.	22
	I _R przy		Ą	пах	7											-							•							-	
		tatg	S _O	Ħ	9	-40 +125		-					•																		
Parametry graniczne /tamb = 25°C/		t samb	၁၀		5	-25 +85											-														
Parame /t	₩	•	၁၀	хеш	4	150																									
	Ptot		М	mex	3	0.25	•				,																				
	T.		Y .	твх	2	0.2																				e manifes e					
	I	Oznaczenie	wyropn		1	BZP 630 -	- C7V5	- C8V5	- C9V1	- 610	- 611	- 012	- 613	- 615	- 016	- 618	- 020	- G22	- C24	- 027	- 030	- 033	- D8V2	- D10	- D12	- D15	- D18	- D22	- D27	- D30	- D33

														ž																							
18		CE 33																												CE 02							
17		układy stabi-	11zacji	i ogra-	nie na-	piecia																				_				ukzady	37801-	1 ogræ	nie na-	piecia			
16					100	20	20	20	20	20	20	25	25	52	25	25	25	25	25	.!	8	8	2	2	20	52	52	22	52	5							
15		t	//+/	/+1/	/48/	/+8/	/6+/	/+10/	/+10/	/+10/	/+11/	/+11/	/+11/	/+11/	/+11/	/+11/	/+11/	/+11/	/+11/		/+//	/+1/	/6+/	/+10/	/+10/	/+11/	/+11/	/+11/	/+11/		9	q	-5,5	-4,5	-2,5	+5,0	+3,0
14			V	0	2	4	4	7	7	6	è۷	01	=	12	13	14	15	50	20		N	4	4	-	6	=	5	15	20		8	9	3	8	8	75	3
13	-		76/	6.2	8,7	9,6	10,6	11,6	12,7	14,1	15,3	17,1	19,1	2,12	23,3	25,6	28,9	32	35		7,5	2,6	=	13,4	16,5	ಜ	24,4	8	36,5		3,5	3,8	4,1	4,6	5,0	5,4	0,9
12		(ρ •	7,5	8,2	9,1	9	-	12	13	15	91	18	20	22	24	2.2	20	33	- 1	8,9	8,2	9	12	15.	18	22	27	33		3,3	3,6	3,9	4,3	4.7	5,1	5,6
11		,	4,0	0,7	7,7	8,5	9,4	10,4	11,4	12,4	13,8	15,3	16,8	18,8	20,8	22,8	25,1	28	31		0,9	7,3	8,8	10,7	13	16	19,6	24,1	29,6		3,1	3,4	3,7	4,0	4.4	4,8	5,2
5		0,5																												0,1							
6		1,2																												1,1							
ω			~	5	9	7	7,5	8,5	6	0	-	12	14	15	17	18	20	22,5	25		~	9	7,5	6	=	14	12	20	25			-	-	_	-	-	-
7		0,5										,																			20	20	0	-2	~	-	-
9		-40 +100																•								,				-55 +150							
5		-25 +85												•									•							-40 +125							
4		150																			,									150							
~		1,2																												0.4							
2		٣				•		,		•																	··········			0.2							
-		BZP 650 -	- c6v8	- C7V5	- C8V2	1765 -	- 610	- 011	- 012	- 613	- 015	- 016	- C18	- 020	- C22	- C24				}	- D6V8	- D8V2	- D10	- D12	- D15	- D18	- D22	- D27	- D33	BZP 683 -	- C3V3						

	r																																1	
18																																	CE 22	
17	układy	stabi-	lizacji i ogra-	nicza-	nia na- piecia							-		1																	•		1/1	
16																																		
15	+4.0	+4.0	+5.0	+5.5	0.9+	+6,5	+7,0	+7,0	+7,5	+7,5	· 8+	+8,0	+8°0	+8,5	+8,5	+8,5	0,6+	0.6+	0.9-	-5,5	-2,5	+3,0	+4,5	+5,5	+6,5	+7,0	+7,5	+8,0	+8,5	+8,5	0.6+	0.6+		
14	40	15	10	10	15	15	20	50	52	30	40	55	55	58	80	80	96	9	90	9	90	09	15	10	15	50	30	. 55	58	8	96	06		
13	9.9	7.2	7,9	8,7	9,6	10,6	11,6	12,7	14,1	15,6	17,1	19,1	21,2	23,3	25,6	28,9	32	35	3,7	4,3	5,2	6,3	7,5	9,2	-	13,4	16,5	50	24,4	30	33	36,3	0,852/	
12	6,2	9	7,5	8,2	9,1	10	11,	12	13	15	16	18	50	22	24	27	30	33	3,3	3,9	4,7	5,6	6,8	8,2	10					27	30	33	8.0	
1-	5,8	6.4	7,0	7,7	8,5	9,4	10,4	11,4	12,4	13,8	15,3	16,8	18,8	20,8	22,8	25,1	28	31	2,9	3,5	4,1	5,0	9,0	7,3	8,8	10,7	13	16	19,6	24,1	27	7,62	7.0	
10																							•			-								
6													•				-														•			
8	-	1,5	1,5	2	9	9	7	80	6	10	1.	12	14	15	16	-	-	-	-	-	-		1,5	2	9	ω	10	12	15	18	50	22	9	- L
7		-	-	-		-	-	-	-	-	-	-	-	- -	-	-	_	-	30	10	8	-	-	-	-	-	-	-	-	-		-	-	
9			,																											-			-55` +150	
5																										-							-25 +85	
4																			•														150	
3																				-							•			7			0,1	
2		-																	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-											0,02	
-	- c6v2	- c6v8	- c7v5	- C8V2	- C9V1	- 610	- 611	- 012	- C13	- C15	- C16	- C18	- 620	- C22	- 024	- C27	- 030	- 633	- D3V3	- D3V9	- D4V7	- D5v6	- D6V8	- D8V2	- D10	- D12	- D15	- D18	- D22	- D27	- D30	- D33	BZ2 687- - 0075	

18	GB 31
17	stabili- lizacja 1 ogra- nicze- nicze- pięcia w ukła- dach motory- zacyj-
16	
15	
14	300 350 350 350
13	156 171 191 212
12	150 160 180 200
11	138 153 168 188
10	.5 0,2
6	7°5
8	75 75 90 90
7	-
9	50 -40 +175
5	-40 +150
4	175
3	1,3
2	0,0
-	BZYP 01C150 ^X BZYP 01C160 ^X BZYP 01C180 ^X BZYP 01C200 ^X

1/ stabilizatory obrotów silnika magnetofonów bateryjnych

^{2/} napiecie w kierunku przewodzenia przy $I_{\rm p}$ = 5 mA

nowe uruchomienia

N 1.7. Stabilistory (diody Zenera) specjalne

		Obud owa			12	GE 42		· ·							•								CB 02	_						,
		Zastoso-) !		11	Stabilizacia	i ogranicza-	מדומדולפון מדוון					-										Stabilizacia	1 ogranicas-	WIDSTIFF STU					
	przy	$\mathbf{I}_{\mathbf{Z}}$	УŒ		10	Š																	3							
	a uz p		10-4/0c	typ	6		+5.0	+5,5	0,64	+6,5	+7,0	+7,0	+7,5	+7,5	+8,0	0,8+	0,8+	+8,5	+8,5	+8,5	0.6+	0,6+		0,9-	0,9-	-5,5	-4,5	-2,5	+2,0	+3,0
	2.I		c	max	8		9	10	15	15	50	2	೭	35	24	22	55	58	98	90	6	8		100	9	100	100	8	75	09
1b = 25°C/				BBX		- 2	7,9	8,7	9,6	10,6	11,6	12,7	14,1	15,6	17,1	19,4	21,1	23,3	25,6	28,9	32	35		3,5	3,8	4,1	9,4	5,0	5,4	6,0
Parametry charakterystyczne /t _{zmb}	Zn		Α	mou	7		7,5	8,2	9,1	ر 1	F	12	£	5	16	6	20	22	24	27	20	33		3,3	3,6	3,9	4,3	4,7	5,1	5,6
ırakteryst				uţu			7,0	7,7	8,5	4,0	10,4	11,4	12,4	13,8	15,3	16,8	18,3	20,8	22,8	25,1	82	31		3,1	3,4	3,7	0,4	4,4	8,4	5,3
etry ch	rey	T.	A		9									,			-						0,1		٠,				,	
Paran	Up prey		Λ	пвх	5	1.2																	1,1							
	£2	L.	Λ		7		1,5	<u>س</u>	٣	4,5	4,5	6,5	6,5	-	#	12	7 7	12	46	م	20	22	-	τ-	-	-	-	₩.	-	-
	I _R prey		Aut	max	3	₹-												٠.						30	50	9	2	7	-	-
	Ptot		æ	TA T	2	0,251/				•									,				•	/+4.0						
		Oznaczenie wyrobu			-	BZAP 30 -	- C7V5	- 0872	- C9V1	- 610	- 3	- C12	- 93	- 615	- 016	- 018	- 020	- C22	- 024	- 027	- 630	- 033	BZAP 83 -	- (3V3	- c3¥6	- 6309	- C4V3	- C4V7	- 0584	- 0576

	 																	
12													,					
11	Stabilizacia	1 ogranicza- nie napiecia									-							-
10													-	-	•			
6	+4,0	+4,5	+5,0	+5,5	+6,0	+6,5	+7,0	+7,0	-+7,5	+7,5	+8,0	+8,0	0 6 8+	+8,5	+8,5	+8,5	0.6+	+9,0
8	07	15	10	9	15	15	202	20	25	30	04	55	55	58	80	8	8	8
	9,6	7,2	7,9	8,7	9,6	10,6	11,6	12,8	14,1	15,6	17,1	19,1	24,5	23,3	25,6	28,9	32	35
7	6,2	8,9	7,5	8,2	9,1	9	£	12	5	£.	16	18	20	.22	54	27	8	55
	5,8	4,9	7,0	7,7	8,5	7,6	10,4	11,4	12,4	13,8	15,3	16,8	18,8	20,8	22,8	25,1	28	ጙ
9														-				
5																		,
4	-	1,5	1,5	6	n	4,5	4,5	6,3	6,5	11	1	12	4.	15	.	18	20	22
3	-	-		-	-	-	+-	-	-	. 🕶	-		+	-		-	· ***	-
2														,				
1	_ G6V2	- 06V8	- 0775	- C8V2	- 0974	0.50	5	- 012	- E	63.5	- CH 6	- 618	- 620	- 022	- 024	- 027	- 630	- 033

 $1/I_{phax} = 0,2 A; I_{Zmax} = \frac{r_{tot}}{U_{r}}; t_{jmax} = 150^{\circ} C$

N 1.8. Diody pojemnościowe (warikapy)

	Param /	Parametry graniczne /tamb = 25°C/	czne ^{2/}		,	R	Parametry charakterystyczne / $t_{amb} = 25^{\circ}$ C/	obarakt	erysty	/ euzo.	/t _{amb} =	25°c/				
	,				C _r pr	przy	Cr/UR1	1/ prey	h		,		rs lub q	lub Q prey	788±0-	
Oznaczenie wyrobu	T.	URM	Ţ,	+ C	1 MHz	H _B). }•	· · ·	r _R 4	Ч я2	μ [®]	y	₩.	_S H	BOWB-	Obu- down
	Λ	Λ	TO A	Ad		۸			Δ	Δ	C		MHz	ř.		
	TBU	mex	T.B.	uta	жөш		nim	max			DBX	min/typ/				
	2	3	4	5		9	7		8	D	10	+	12	13	14	15
BB 1041/	30		100	34	745	J.	2,5	2,8	3	30	7,60	135	100	38	æ	CB 34
BB 104 B ¹ /	30		100	37	24	~	2,5	2,8	m	30	4,0	135	100	38	ď	CB 34
BB 104 G1/	30		400	34	39	<u>_</u>	2,5	2,8	n	98	460	135	9	38	8	CB 34
BB 105 A ³ /	28	30	٠.	2,3	2,8	22	4	ر. 	n	25	8 0		470	o	م	CB 37
BB 105 AD ³ /	28	30		2,2	2,8	25	4,5	9	9	25	860		470	σ,	م	CB 37
BB 105 B ³ /	28	20		2,0	2,3	. 25	4,5	٠	٣	25	860		470	δ,	م	CB 37
BB 105 G ^{3,}	28	30		1,8	2,8	25	4	9	'n	25	1,2	(470	σ.	م	CE 37
BB 105 GD ³⁷	28	8		1,8	2,8	25	4,5	9	n	52	1,2		044	60	م	CB 37
BB 109 3/x	. 28	30		4,3	6,0	25	4,3	, 0	٣	23		/580/	30	٣	م	CB 37

a przestrajanie obwodów VHP

przestrajanie obwodów VHF, UHF

nowe uruchomienia

1/ podwójna dioda ze wspólną katodą $^{2/t_{jmax} = 100^0c}$

3/ moga być dobierane w komplety po 2, 3, 4 1 6

1.9. Diody pojemnościowe (warikapy) specjalne

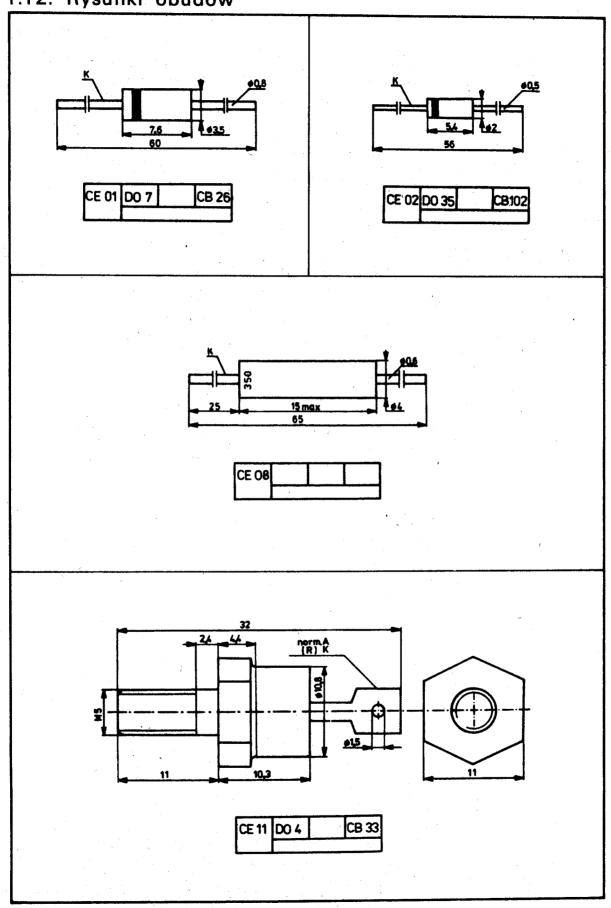
	aran A	Parametry graniczne /tamb = 25 G/	iczne C/			Param	etry c	Parametry charakterystyczne / t_{amb} = 25°C/	ystyczn	e /tam	lb = 25	/5°				
	ä	URM	4	J.	przy	zy '		°4/4R1	/	przy		rs pr	przy		Zasto- sowanie	Obud owa
			•			uR R	면 위	5. Jan	12/	UR-	^U R2		다. 위	o ^H		
1	٨	Δ	ပ္ဝ	Ad.	[Sta	Λ	MHz			۸	Λ	C;	MHZ	pF		
i	max	шах	шах	min	ma.x			nin	ngx			max				
1 1	2	3	4	6,	2	9	7	8		6	10	11	12	13	14	15
	28	30	125	2,3	2,8	25	-	4	80	~	25	8,0	470	۰ ه	stroje- nie obu-	CE 37
	28	30	125	ŗ.	2,3	25	~	4,5	9	m'	25	8,0	044	6	dów re- zonanso-	CE 37
	28	30	125	1,8	2,8	25	~	4	9	m	25	1,2	044	6	wyon.w zakresie VHF i	CE 37
			-										-		UHD	

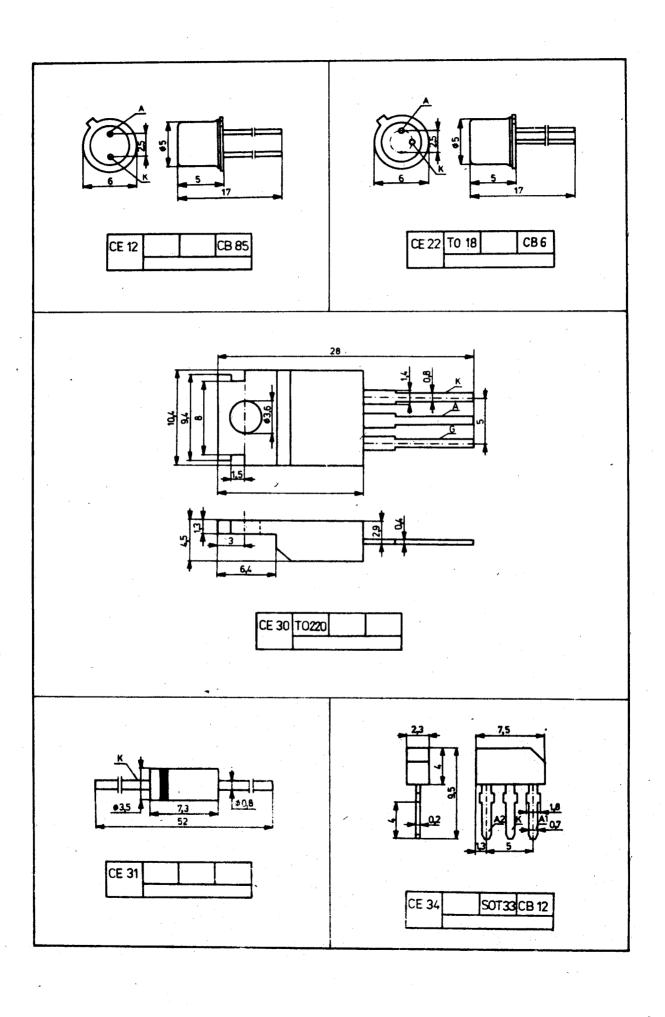
S 1.10. Tyrystory

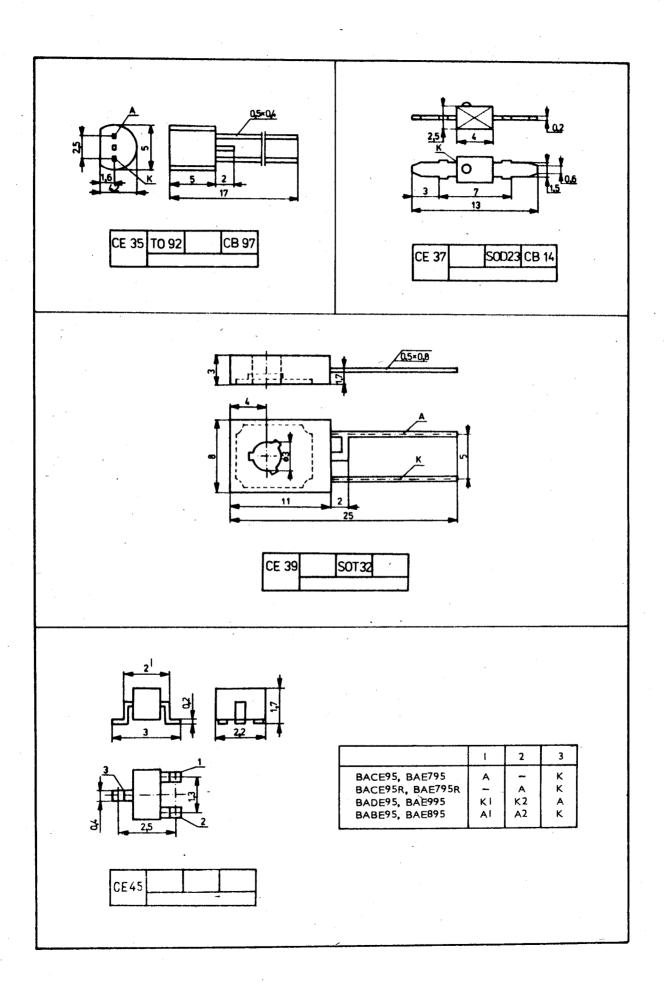
		F.	Arranet	Ty &F	inicine /t	Parametry granicine / $t_{amb} = 25^{\circ}$ C, $t_{p} = 50 \text{ Hz}$	tp = 50 B	9/			Param	etry c	Parametry charakterystyczne /t _{amb} = 25°C/	rystyo	zne Æ	a dme	25°0/			
Ognacsenie	MSC _D	UDRE URRE I.	TRRW	I.	IT/AV/	IT/RHS/	LTSH	dig	PGM	Up, prey	Zy	IGT	UGT	ad	pray	U _T prey	zy .		Zasto-	Obudowa.
#3F00#						•	TEN	d t			Ħ			윤	H.		Ħ	I G		
	A	A	-	4	4	Ą	Ą	A/ps	*	>	Ą	ā	Δ	Λ	Сŝ	₽	1	A		
	T-B-X	X 9	2		BAX	X State	X80	TBBX	TOG X	THE X		DO.X	DB.X			max			,	
•	2	٦	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	24
BTP 118-400	924	004	4	31/	21/2	81/	. 0/	2005/	25	8	10	45	4	12	30	3	30	0,2	6	CB 30
BTP 128-550	650	250	4	31/	51/	, ₈	20	2005/	25	~	9	45	4	12	8	6	R	0,2	ď	CB 30
BTP 129-650	700	650	*	31/	26	94/	200	2005/	25	1,7	10	04	4	12	8	η.	2	0,2	d	CE 30
BTP 129-750	800	750	4	31/	51/	81/	02	2005/	22	1,7	9	C 4	, *	12	9	σ,	8	0,2	d)	CB 30

a saybki tyrystor sintegrowany s dioda

tamb = -40 ÷ +85°C


tstg = -40 ÷ +150°C


 $1/t_{oase} = 60^{\circ}C; \quad \theta = 180^{\circ}; t_{p} = 50 \text{ Hz}$


 $^{2}/~{\rm U_D} = {\rm U_{DRM}}; ~{\rm I_G} = 50~{\rm mA}; ~{\rm t_r} = 0;1~{\rm \mu s}$

			Parametr	y gran	Parametry graniczne /tamb		25°C; f = 50 HE/			Pare	umetry	obara	Parametry obarakterystyczne $/t_{amb} = 25^{\circ}C/$	yezne	/tamb	= 25°C	/		
Oznaczenie wyrobu	MSCD	#ac _n	пяян	ъ°,	I _T /AV/	IT/RMS/	I PSE	41 _T	PGM	U _F prey	rzy L	IGT	UGT	д —	prag B.	U _T prey	ğ L	Zasto- sowanie	Obudowa
	A	A	Α	A	¥	A	A	A/µs	*	P	4 4	Am.	Ą	Λ Α	, 3	Δ	T Y		
•	DAX	MAX	BAX		mex	Xen	BBX	MAX	mex	mex		TB8.X	max			mex		,	
-	2	3	4	3	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20
BTAP 28-400	054	004	4	31/	51/	81/	70	2005/	25	7	9	7.4	4	5	8	n	ရှိ	szybki	CE 30
BTAP 28-550	650	550	4	31/	21/	81/	70	2002/	22	8	10	45	4	12	2	<u> </u>	ಜ	zinte-	CE 30
BTAP 29-650	200	650	4	31/	21/	81/	70	2002/	25	1,7	9	04	*	12	8	m	೭	g dioda	CE 30
BIAP 29-750	800	750	4	31/	91/	81/	20	2002/	25	1,7	10	0#	4	12	8	n	8		CB 30

 $1/t_{oase} = 60^{\circ}C;$ $\theta = 180^{\circ};$ $f_p = 50 \text{ Hz}$ $2/U_D = U_{DRM;}$ $I_G = 50 \text{ mA};$ $t_T = 0,1 \text{ Ms}$ 1.12. Rysunki obudów

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.