

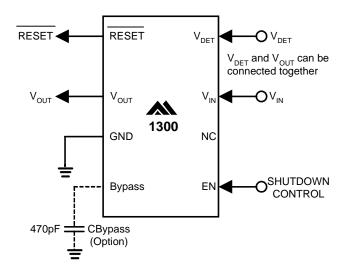
General Description

The AME1300 combines a Low Dropout Regulator and a Microprocessor Reset Monitor in a space-saving 8-Pin MSOP package. Total supply current is 50μ A(typical),20 to 60 times lower than in bipolar regulators .

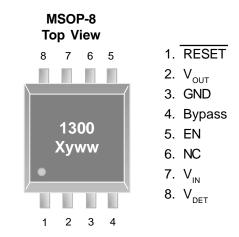
The AME1300 has an extremely precise output with a typical accuracy of $\pm 1.5\%$. Other key features include ultra low noise operation, very low dropout voltage and internal feed-forward compensation for fast response to step changes in load. The AME1300 incorporates both over-temperature and over-current protection. When the shutdown control EN is low, the regulator output voltage falls to zero, RESET output remains valid and supply current is reduced to $10\mu A$ (typical). The AME1300 is stable with an output capacitor of only 2.2 μ F and has a minimum output current of 300 mA.

An active low RESET is asserted when the detected voltage (V_{DET}) falls below the reset voltage threshold. The reset output remains low for 300msec(typical) after V_{DET} rises above reset threshold. The AME1300 also has a fast wake up response time (10µsec typically) when released from shutdown.

Features

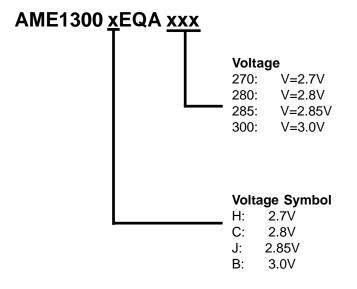

- LDO with intergrated Microprocessor Reset Monitor Functionality
- Guaranteed 300mA Output
- Accurate to within 1.5%
- 50µA Quiescent Current
- Over-Temperature Shutdown
- Current Limiting
- Short Circuit Current Fold-back
- Noise Reduction Bypass Capacitor
- Power-Saving Shutdown Mode
- Space-Saving MSOP Package
- Factory Pre-set Output Voltages
- Low Temperature Coefficient

300mA CMOS LDO with RESET Function


Applications

- Instrumentation
- Portable Electronics
- Wireless Devices
- Cellular / GSM / CDMA Phones
- PC Peripherals
- Battery Powered Widgets

Typical Applications


Pin Configuration

Note: X represents the regulator output voltage. yww represents the date code. Please contact AME for details

Ordering Information

Part Number	Marking	Output Voltage	Package	Operating Temp. Range
AME1300HEQA270	1300 Hyww	2.7V	MSOP-8	- 40°C to + 85°C
AME1300CEQA280	1300 Cyww	2.8V	MSOP-8	- 40°C to + 85°C
AME1300JEQA285	1300 Jyww	2.85V	MSOP-8	- 40°C to + 85°C
AME1300BEQA300	1300 Byww	3.0V	MSOP-8	- 40°C to + 85°C

Please consult AME sales office or authorized Rep./Distributor for other voltage accuracy and package type availability.

300mA CMOS LDO with RESET Function

■ Absolute Maximum Ratings

Parameter	Maximum	Unit
Input Voltage	7	V
Output Current	P _D / (V _{IN} - V _O)	mA
Output Voltage	GND - 0.3 to V _{IN} + 0.3	V
ESD Classification	В	

Caution: Stress above the listed absolute maximum rating may cause permanent damage to the device

Recommended Operating Conditions

Parameter	Rating	Unit
Ambient Temperature Range	- 40 to + 85	°C
Junction Temperature	- 40 to + 125	°C

Thermal Information

Parameter	Maximum	Unit	
Thermal Resistance (θ_{jc})	MSOP-8	39	°C / W
Thermal Resistance (θ_{ja})	MSOP-8	206	°C / W
Maximum Junction Temperature		150	°C
Maximum Lead Temperature (10 Sec)		300	°C

300mA CMOS LDO with RESET Function

Electrical Specifications

TA= 25°C unless otherwise noted, $V_{IN}=V_{O(NOM)}+1V$, $I_{O}=1mA$, $V_{EN}=V_{IN}$,

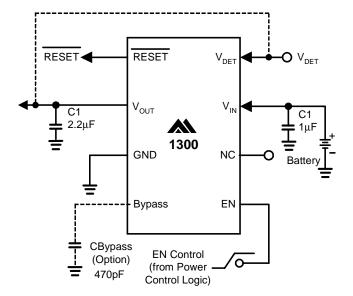
Parameter	Symbol	Test Condition		Min	Тур	Max	Units
Input Voltage	V _{IN}			Note 1		6	V
Output Voltage Accuracy	Vo	I _O =	1mA	-1.5		1.5	%
			I _O =0.1mA		1	30	\$O
Dropout Voltage	V _{DROPOUT}	V _O =V _{O(NOM)} -2.0%	I _O =100mA		70	130	mV
			300mA		210	390	
Output Current	I _O	V _O >	•1.2V	600			mA
Current Limit	I _{LIM}	V _O >	•1.2V	600	800		mA
Short Circuit Current	I _{SC}	V _C	-0V		300	600	mA
Quiescent Current	Ι _Q	I _O =	0mA		40	50	μA
Ground Pin Current	I _{GND}	I _O =1mA	to 300mA		40		μA
Line Regulation	DEC	I _O =1mA	$2.0V \le V_0 \le 4.0V$	-0.1	0.02	0.1	%
Line Regulation	REG _{LINE}	$V_{IN}=V_O+1$ to V_O+2	4.0V <= Vo	-0.4	0.2	0.4	%
Load Regulation	REG _{LOAD}	I _O =1mA to 300mA		-1	0.2	1	%
Over Temerature Shutdown	OTS				150		°C
Over Temerature Hysterisis	OTH				30		°C
V _O Temperature Coefficient	TC				30		ppm/ºC
Power Supply Rejection	PSRR	I _O =100mA C _O =2.2μF	f=1kHz		50		dB
Output Voltage Noise	eN	f=10Hz to 100kHz I _O =10mA	Co=2.2µF		30		μVrms
EN Input Throshold	V _{EH}	V _{IN}	I=5V	2.0		Vin	V
EN Input Threshold	V _{EL}	V _{IN}	I=5V	0		0.4	V
EN Input Riss Current	I _{EH}	V _{EN} =V _{II}	_N , V _{IN} =5V	-1.5 1 1 30 1 30 1 70 130 210 390 600 210 390 600 800 1 600 800 600 600 800 600 40 50 40 50 40 50 40 50 0V -0.1 0.02 0.1 0V -0.1 0.2 1 0V -0.1 0.2 1 0V -0.1 0.2 1 0.1 0.2 1 1 0.2 1 150 1 150 300 1 1 300 500 1 1 100 500 1 1 100 300 1 1 100 300 1 1 100 300 1 1 100 300 1 1 10	0.5	μA	
EN Input Bias Current	I _{EL}	V _{EN} =0V	′, V _{IN} =5V		μA		
Shutdown Supply Current	I _{SD}	V _{IN} =5V, V ₀	_D =0V, V _{EN} =0			10	μA
Shutdown Output Voltage	V _{O,SD}	I _O =0.4m	A, V _{EN} =0	0		0.4	V

Note1:V_{IN(min)}=V_{OUT}+V_{DROPOUT}

300mA CMOS LDO with RESET Function

Electrical Specifications(contd.)

RESET Output


Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
V _{DET} Range	V_{DET}	TA=-40)~85°C	1		5.5	V
Reset Threshold	TA=25°C		2.59	2.63	2.67	V	
Reset miesnolu	V _{TH}	TA=-40)~85°C	1	2.68	V	
RESET Threshold Tempco					30		ppm
RESETB Output Voltage Low	V _{OL}	V _{DET} <v<sub>TH min</v<sub>	I _{SINK} =1.2mA, TA= -40~85°C			0.5	V
RESETB Output Voltage High	V _{OH}	V _{DET} >V _{TH} max	I _{SOURCE} =0.5mA, TA= -40~85°C	0.8V _{DET}			V
V _{DET} to Reset Delay	T _{D1}	V _{DET} = V _{TH} - 100mV, TA= -40 ~ 85°C			40		μS
Reset Active Timeout Period*	T _{D2}	TA= -40	0 ~ 85°C	140	210	500	mS

300mA CMOS LDO with RESET Function

Detailed Description

The AME1300 is a combination of a fixed output, low drop-out regulator and microprocessor monitor. Unlike bipolar regulators, the AME1300 supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation at very low load currents(an important consideration in RTC and CMOS RAM battery back-up applications) as well as with any type of capacitor (see below). AME1300 pin functions are detailed below:

Pin #	Pin Name	Pin Description
1	RESET	RESET output remains low while V_{DET} is below the reset voltage threshold, and for 300msec V_{DET} rises above reset theshold.
2	V _{OUT}	Regulated Voltage Output.
3	GND	Ground Terminal.
4	Bypass	Reference Bypass Input. Connecting a 1000pF to this input further reduces output noise.
5	EN	Shutdown Control Input. The regulator is fully enabled when a logic high is applied to this input. The regulator enters shutdown when a logic low is applied to this input. During shutdown, regulator output voltage falls to zero, RESET output remains valid and supply current is reduced to 10μ A (typ.)
6	NC	No connect.
7	V _{IN}	Power Supply Input.
8	V _{DET}	Detected input Voltage. V_{DET} and V_{OUT} can be connected together.

Pin Description

300mA CMOS LDO with RESET Function

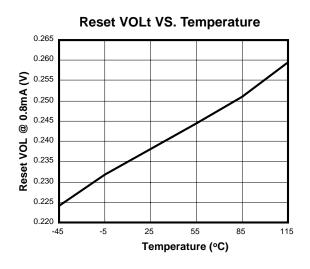
Enable

When actively pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than 10μ A. This pin behaves much like an electronic switch.

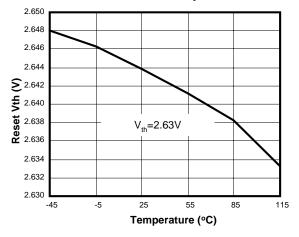
RESET Output

The RESET output is driven active low within 40µsec of V_{DET} falling through the reset threshold.RESET is maintained active for a minimum of 140msec after V_{DET} rises above the reset threshold. The AME1300 has an active-low RESET output. The output of the AME1300 is guaranteed vaild down to V_{DET} = 1V and is optimized to reject fast transient glitches on the V_{DET} line.

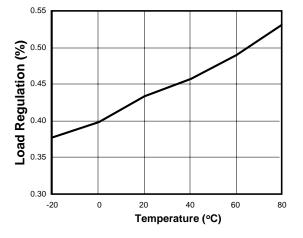
External Capacitors


The AME1300 is stable with an output capacitor to ground of 2.2μ F or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a 0.1μ F ceramic capacitor with a 10μ F Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

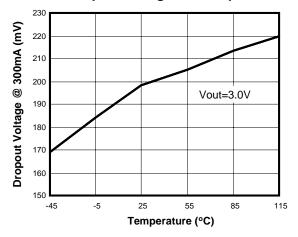
A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be at least $0.1\mu F$ to have a beneficial effect.


A third capacitor can be connected between the BY-PASS pin and GND. This capacitor can be a low cost Polyester Film variety between the value of $0.001 \sim 0.01 \mu$ F. A larger capacitor improves the AC ripple re-jection,but also makes the output come slowly. This "Soft" turn-on is desirable in some applications to limit turn-on surges.

All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.



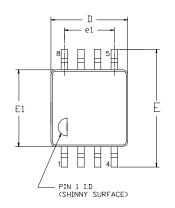
Reset Vth VS. Temperature

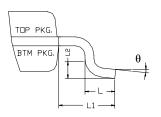

Load Regulation VS. Temp.

300mA CMOS LDO with RESET Function

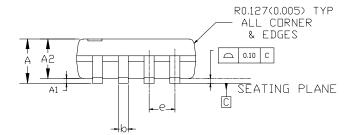
Reset Time VS. Temperature

Dropout Voltage VS. Temp.





300mA CMOS LDO with RESET Function


Package Dimension

MSOP-8

DETAIL "A"

B-	c b c c c c c c c c c c c c c c c c c c	e 4 s p
⊨−− E1−−− − \		a 5
see detail <i>"a"</i> —	WITH PLATING	5
SEE DETAIL A	<u>Section B - B</u>	C

SYMBOLS	MILLIN	IETERS	INC	HES
STWIDOLS	MIN	MAX	MIN	MAX
Α	-	1.07	-	0.042
A ₁	0.05	0.20	0.002	0.006
A2	0.81	0.91	0.03	0.036
b	0.28	0.38	0.011	0.015
b1	0.03	0.33	0.011	0.013
С	0.14	0.23	0.0055	0.009
c1	0.14	0.17	0.006	0.0065
D	2.90	3.10	0.114	0.12
E	4.78	4.98	0.188	0.196
E1	2.90	3.10	0.114	0.122
е	0.65	TYP	0.025	5 TYP
e1	1.95	TYP	0.076	7 TYP
L	0.406	0.686	0.016	0.027
L1	0.94 REF		0.037 REF	
L2	0.254	4 TYP	0.010) TYP
θ	0°	8°	0°	8°

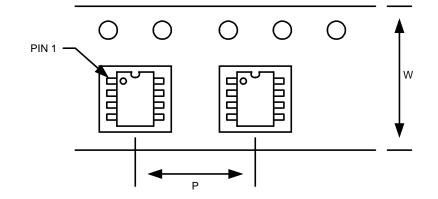
NOTE:

1. Controlling dimension : Millimeter, converted inchdimension are not necessarily exact.

2. Dimensiioning and tolerancing per ansi Y14.5m-1994.

3. Dimension "d" does not include mold flash,protrusion or gate burr, mold flash,protrusion and gate burr shall not exceed 0.15mm(0.006") per side. Dimension e1 do not include inter-lead flash or protrusion, inter-lead flash and protrusion shall not exceed 0.15mm(0.006") per side.

4. The package top be smaller than the package bottom. Dimension d and e1 are determined at outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.


5. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm(0.0031) total in excess of the "b" dimension at maximum material condition.

9

300mA CMOS LDO with RESET Function

Tape and Reel Diagram

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
MSOP-8L	12mm	9.1mm	4000	13in

www.ame.com.tw E-Mail: sales@ame.com.tw

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information. © AME, Inc. , May 2003

Document: 2006&7-DS1300-B

Corporate Headquarter AME, Inc.

2F, 189 Kang-Chien Road, Nei-Hu District Taipei 114, Taiwan, R.O.C. Tel: 886 2 2627-8687 Fax: 886 2 2659-2989

U.S.A.(Subsidiary) Analog Microelectronics, Inc.

3100 De La Cruz Blvd. Suite 201 Santa Clara, CA. 95054-2046 Tel : (408) 988-2388 Fax: (408) 988-2489 This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.