PD - 94583

International **IOR** Rectifier

AHV28XX SERIES

28V Input, Single, Dual and Triple Output

ADVANCED ANALOG HYBRID-HIGH RELIABILITY DC/DC CONVERTERS

Description

The AHV Series of DC/DC converters are designed to replace the AHE/ATO family of converters in applications requiring compliance to MIL-STD-704A through E, in particular the input surge requirement of 80 volts specified to withstand transient input voltage of 80 volts. No input voltage or output power derating is necessary over the full military temperature range.

These converters are packaged in an extremely rugged, low profile package that meets all requirements of MIL-STD-883 and MIL-PRF-38534. Parallel seam weld sealing and the use of ceramic pin feedthru seals assure long term hermeticity after exposure to extended temperature cycling.

The basic circuit is a push-pull forward topology using power MOSFET switches. The nominal switching frequency is 500KHz. A unique current injection circuit assures current balancing in the power switches. All AHV series converters use a single stage LC input filter to attenuate input ripple current. A low power 11.5volt series regulator provides power to an epitaxial CMOS custom pulse width modulator integrated circuit. This single integrated circuit provides all PWM primary circuit functions. Power is transferred from primary to secondary through a ferrite core power transformer. An error voltage signal is generated by comparing a highly stable reference voltage with the converter output voltage and drives the PWM through a unique wideband magnetic feedback circuit. This proprietary feedback circuit provides an extremely wide bandwidth, high gain control loop, with high phase margin. The feedback control loop gain is insensitive to temperature, radiation, aging, and variations in manufacturing. The transfer function of the feedback circuit is a function of the feedback transformer turns ratio which cannot change when subjected to environmental extremes.

Manufactured in a facility fully qualified to MIL-PRF-38534, these converters are available in four screening grades to satisfy a wide range of requirements. www.irf.com

Features

- 80 Transient Input (100 msec max.)
- 50 VDC Input (Continous)
- 16 to 40 VDC Input Range
- Single, Dual and Triple Outputs
- 15 Watts Output Power (No Temperature Derating)
- Low Input / Output Noise
- Full Military Temperature Range
- Wideband PWM Control Loop
- Magnetic Feedback
- Low Profile Hermetic Package (0.405")
- Short Circuit and Overload Protection
- Constant Switching Frequency (500KHz)
- True Hermetic Package (Parallel Seam Welded, Ceramic Pin Feedthru)

The CH grade is fully compliant to the requirements of MIL-PRF-38534 for class H. The HB grade is processed and screened to the class H requirement, but may not necessarily meet all of the other MIL-PRF-38534 requirements, e.g., element evaluation and Periodic Inspection (P.I.) not required. Both grades are tested to meet the complete group "A" test specification over the full military temperature range without output power deration. Two grades with more limited screening are also available for use in less demanding applications. Variations in electrical, mechanical and screening can be accommodated. Contact Advanced Analog for special requirements.

11/20/02

Specifications (Single Output Models)

 $T_{CASE} = -55^{\circ}C$ to +125°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

ABSOLUTE MAXIMUM R	ATINGS			
Input Voltage	-0.5V to 50VDC	-0.5V to 50VDC (continuous) 80V (100ms)		
Power Output	Internally limited	I, 17.5W typical		
Soldering	300°C for 10 se	conds (1 pin at a time)		
Temperature Range	Operating	-55°C to +135°C		
_	Storage	-65°C to +135°C		

		Condition								
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C,$	Crown A		00050		0400		0150	
TEST	SYMBOL	$V_{IN} = 28 V_{DC} \pm 5\%, C_{L} = 0,$	Subaroups	Min	Max	Min	Max	Min	Mox	Linite
1201	OTHEOL	unless otherwise specified	Cubgroups	IVIIII	IVICA	IVIIII	IVIAX	IVIIII	IVIAX	Units
STATIC										
CHARACTERISTICS										
OUTPUT	V _{our}	V _{IN} = 16, 28, and 40 VDC	1	4.95	5.05	11.88	12.12	14.85	15.15	V
Current		$I_{out} = 0$	2,3	4.90	2.10	11.76	12.24	14.70	15.30	V A
Ripple Voltage ¹	V V	$V_{\rm N} = 16, 28, \text{ and } 40 \text{ VDC}$	1,2,3	0.0	60	0.0	60	0.0	60	m\/n-n
rappio voltago	* RIP	BW = DC to 1 MHz	.,_,0		00		00		00	
Power	Pour	V _{IN} = 16, 28, and 40 VDC	1,2,3	15		15		15		W
REGULATION										
Line	VRLINE	V _{IN} = 16, 28, and 40 VDC	1		5		30		35	mV
Land		$I_{out} = 0$, half load and full load	2,3		25		60		/5	mV
Load	VRLOAD	VIN = 16, 28, and 40 VDC	1,2,3		50		120		150	mv
INPLIT		Iour = 0, Hai load and fui load								
Current	L.	$I_{our} = 0$, Inhibit (pin 2) = 0	1,2,3		18		18		18	mA
	in the second se	Iour = 0, Inhibit (pin 2) = Open			50		50		50	mA
Ripple Current	I _{RIP}	I _{our} = Full load	1,2,3,		50		50		50	mAp-p
EFFICIENCY	E	I _{our} = Full Load	1	72		72		72		%
	100	$T_c = +25^{\circ}C$		400		400		400		
ISULATION	150	input to output or any pin to	1	100		100		100		IVI <u>C2</u>
		VDC								
		$TC = +25^{\circ}C$								
Capacitive Load 2.3	C,	No effect on DC performance	4		500		200		200	μF
	-	TC = +25°C								
Load Fault										
Power Dissipation	P _D	Overload, TC = $+25^{\circ}C^{\circ}$	1		8.5		8,5		8.5	W
0.111.5		Short Circuit, TC = +25°C			8.5		8.5		8.5	VV
Switching Frequency	-	L - Full Lood	4	450	550	450	550	450	550	
DYNAMIC	s		4	430	550	400	550	430	550	INI IZ
CHARACTERISTICS										
Step Load Changes										
Output Transient ⁵	VOT	50% Load 135 100% Load	4	-300	+300	-300	+300	-300	+300	mVpk
		No Load 135 50%	4	-500	+500	-750	+750	-750	+750	mVpk
Recovery		50% Load 135 100%	4		70		70		70	μs
			4		200		1500		1500	μs
Sten Line Changes		3078 E0ad 335 140 1E0ad	-		5		5		5	1115
Output Transient	VOT	Input step 16 to 40 VDC 3.7	4		300		500		500	mVpk
1	- LINE	Input step 40 to 16 VDC 3.7	4		-1000		-1500		-1500	mVpk
Recovery	TT	Input step 16 to 40 VDC 3.6.7	4		800		800		800	μs
		Input step 40 to 16 VDC 3.6.7	4		800		800		800	μs
TURN-ON										
Overshoot	VTon	I _{out} = OA and Full Load	4,5,6		550		750		750	mVpk
Load Fault Recovery		$I_{our} = 0$ and Full Load	4,5,0		10		10		10	mc
LOAU FAUL NECOVERY	I IN _{IE}		4,0,0	1	10	1	10	1	10	1115

Notes to Specifications (Single Output Models)

1. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz.

2. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.

 Parameter shall be tested as part of design characterization and after design or process changes. Thereafter shall be guaranteed to the limits specified.
 An overload is that condition with a load in excess of the rated load but less than necessary to trigger the short circuit protection and is the condition of maximum power dissipation.

5. Load step transition time between 2 to 10 microseconds.

6. Recovery time is measured from the initiation of the transient to where V_{out} has returned to within ±1 percent of V_{out} at 50 percent load. 7. Input step transition time between 2 and 10 microseconds.

8. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhinbit pin (pin 2) while power is applied to the input. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.

International TOR Rectifier

International **10R** Rectifier

Specifications (Dual Output Models)

 $T_{CASE} = -55^{\circ}C$ to +125°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

ABSOLUTE MAXIMUM RATINGS				
Input Voltage	-0.5V to 50VDC (continuous) 80V (100ms)			
Power Output	Internally limited, 17.5W typical			
Soldering	300°C for 10 seconds (1 pin at a time)			
Temperature Range	Operating	-55°C to +135°C		
	Storage	-65°C to +135°C		

		$-55^{\circ}C \le 1_{c} \le +125^{\circ}C$,	$-55^{\circ}C \le 1_{C} \le +125^{\circ}C$, Group A AHV281:		312D AHV2815D			
TEST	SYMBOL	$v_{IN} = 28 v_{DC} \pm 5\%$, $C_L = 0$, unless otherwise specified	Subgroups	Min	Max	Min	Max	Units
STATIC CHARACTERISTICS								
OUTPUT								
Voltage 1	V _{OUT}	I _{OUT} = 0	1	±11.88	±12.12	±14.85	±15.15	V
Current 1,2	l	V = 16, 28, and 40 VDC	1.2.3	±11.76 0.0	±12.24 +625	±14.70 0.0	±15.30 +500	mA
Ripple Voltage ^{1,3}	V _{RIP}	$V_{IN} = 16, 28, and 40 VDC$	1,2,3	0.0	60	0.0	60	mVp-p
124	NIF	BW = DC to 2 MHz						
Power 1.2.4	Pour	V _{IN} = 16, 28, and 40 VDC	1,2,3	15		15		W
REGULATION	VD	16 28 and 40 \/DC	4		20		25	
Line		$v_{\rm IN} = 10, 20, \text{ and } 40 \text{ VDC}$	23		30 60		30	m\/
Load ¹	VR	VIN = 16,28 and 40 V/DC	123		120		150	mV
Loud	LOAD	$I_{out} = 0$, half load and full load	1,2,0		120		100	
INPUT								
Current	I _{IN}	I _{OUT} = 0, Inhibit (pin 2)	1,2,3		18		18	mA
		Tied to input return (pin 10)			05		05	
Dipple Current ³		$I_{OUT} = 0$, Inhibit (pin 2) = Open	100		65		65	mA
Ripple Current	RIP	BW = DC to 2MHz	1,2,3,		50		50	тар-р
EFFICIENCY	Err	I _{our} = Full Load	1	72		72		%
		$T_c = +25^{\circ}C$						
ISOLATION	ISO	Input to output or any pin to	1	100		100		MΩ
		case (except pin 8) at 500 VDC,						
2		$TC = +25^{\circ}C$						
Capacitive Load ""	C_{L}	No effect on DC performance	4		200		200	μF
Lood Foult		10 = +25°0						
Power Dissipation	Р	Overload TC - +25°C 8	1		85		85	w
i ower Dissipation	' D	Short Circuit $TC = +25^{\circ}C$			8.5		8.5	ŵ
Switching Frequency								
	Fs	Iour = Full Load	4	450	550	450	550	KHz
DYNAMIC	Ŭ							
CHARACTERISTICS								
Step Load Changes								
Output Transient °	VOT	50% Load 135 100% Load	4	-300	+300	-300	+300	mVpk
Decession (^{9,10}	TT	No Load 135 50%	4	-500	+500	-500	+500	турк
Recovery	LOAD	50% Load 135 100%	4		1500		1500	μS
		50% Load No ILoad	4		5		5	μS
Step Line Changes		0070 2000 ₃₃₅ 110 12000						1115
Output Transient 7,11	VOT	Input step 16 to 40 VDC	4		1200		1500	mVpk
······	- LINE	Input step 40 to 16 VDC	4		-1500		-1500	mVpk
Recovery 7,10, 11	TT	Input step 16 to 40 VDC	4		4		4	μs
		Input step 40 to 16 VDC	4		4		4	μs
TURN-ON								
Overshoot	VTon _{os}	I _{out} = O and Full Load	4,5,6		600		600	mVpk
Lead Fault Decover: 7		I _{OUT} = O and Full Load	4,5,6		10		10	ms
LUAU FAUIL RECOVERV		1	4,3,0		10		10	1115

For Notes to Specifications, refer to page 5

Specifications (Triple Output Models) $T_{CASE} = -55^{\circ}C$ to +125°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

ABSOLUTE MAXIMUM RA	TINGS		
Input Voltage	-0.5V to 50VDC (continuous) 80V (100ms)		
Power Output	Internally limited, 17.5W typical		
Soldering	300°C for 10 seconds (1 pin at a time)		
Temperature Range	Operating	-55°C to +135°C	
	Storage	-65°C to +135°C	

		Condition						
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C,$	Group A	AHV	2812T	AHV	2815T	
TEST	SYMBOL	$V_{IN} = 28 V_{DC} \pm 5\%, C_{L} = 0,$	Subgroups	Min	Max	Min	Max	Unite
		unless otherwise specified		IVIIII	IVIAA	IVIIII	IVIAA	Units
STATIC								
OUTPUT								
Voltage 1	Vout	$I_{our} = 0$ (main)	1	4.95	5.05	4.95	5.05	V
-			2,3	4.90	5.10	4.90	5.10	V
		$I_{out} = 0 (dual)^{-1}$	1	±11.88	±12.12	±14.85	±15.15	V
Current 1.2,3	lour	V., = 16, 28, and 40 VDC (main)	1.2.3	±11.76 0.0	±12.24 2000	±14.70 0.0	±15.30 2000	mA
	001	V _{IN} = 16, 28, and 40 VDC (dual) ¹	1,2,3	0.0	±208	0.0	±167	mA
Ripple Voltage 1.4	V _{RIP}	$V_{IN} = 16, 28, and 40 VDC$	1,2,3		80		80	mVp-p
		BW = DC to 2 MHz (main) V = 16, 28, and 40 VDC	123		40		40	m\∕n-n
		BW = DC to 2 MHz (main)	1,2,0		40		-10	mvpp
Power 1.2,3	Pout	V _{IN} = 16, 28, and 40 VDC (main)	1,2,3	10		10		W
		(+dual)	1,2,3	2.5		2.5		W
		(total)	1,2,3	15		15		Ŵ
REGULATION								
Line "		$V_{IN} = 16, 28, and 40 VDC$	123		25		25	m\/
		$I_{out} = 0,50\%$, and 100% load (main)	1,2,5		+60		+75	mV
Load 1,3	VR	V _{IN} = 16, 28, and 40 VDC						
		$I_{out} = 0,50\%$, and 100% load (main)			50		50	mV
		$I_{OUT} = 0, 50\%$, and 100% load (dual)			±60		±75	mv
INPUT								
Current	I _{IN}	$I_{out} = 0$, Inhibit (pin 8)	1,2,3		15		15	mA
		Field to input return (pin 10) $I = 0$	123		50		50	mΑ
		Inhibit (pin 2) = open	1,2,0		00		00	110 (
Ripple Current ⁴	I _{RIP}	I _{out} = 2000 mA (main)	1,2,3		50		50	mAp-p
		$I_{out} = \pm 208 \text{mA} (\pm 12 \text{V})$						
		BW = DC to 2MHz						
EFFICIENCY	E _{FF}	I _{out} = 2000mA (main)	1	72		72		%
		$I_{out} = \pm 208 \text{mA} (\pm 12 \text{V})$						
	180	$I_{OUT} = \pm 167 \text{mA} (\pm 15 \text{V})$	1	100		100		MO
ICOLATION	150	case (except pin 7) at 500 VDC,	· ·	100		100		11/12/2
		TC = +25°C						
Capacitive Load ^{6,7}	CL	No effect on DC performance	4		500		500	
		1C = +25°C (main) (dual)	4		200		200	μ⊢ uF
Load Fault					200		200	μ
Power Dissipation ³	P _D	Overload, TC = $+25^{\circ}C^{5}$	1		8.5		8.5	W
		Short Circuit, TC = +25°C	1		8.5		8.5	W
Switching Frequency	F	L = 2000mA (main)	4	450	550	450	550	KH7
	's	$I_{our} = \pm 208 \text{mA} (\pm 12 \text{V})$	Ť		000		000	13112
		$I_{out} = \pm 167 \text{mA} (\pm 15 \text{V})$						

For Notes to Specifications, refer to page 5

International **IOR** Rectifier

Specifications (Triple Output Models) - continued

TEST	SYMBOL	Condition -55°C $\leq T_{c} \leq +125^{\circ}C$, $V_{IN} = 28 V_{DC} \pm 5\%$, $C_{L} = 0$,	Group A Subgroups	AHV2	2812T	AHV2	815T	Linita
		uniess otherwise specified		IVIIN	IVIAX	IVIIN	Iviax	Units
DYNAMIC CHARACTERISTICS Step Load Changes								
Output Transient [®]	VOT	50% Load 135 100% Load	4	-300	+300	-300	+300	mVpk
		No Load 135 50%	4	-400	+400	-400	+400	mVpk
Recovery 9,10	TT _{LOAD}	50% Load ₁₃₅ 100%	4		100		100	μS
		No Load 335 50% Load	4		2000		2000	μS
		50% Load 335 No ILoad	4		5		5	ms
Step Line Changes								
Output Transient	VOT	Input step 16 to 40 VDC	4		1200		1200	mVpk
		Input step 40 to 16 VDC	4		-1500		-1500	mVpk
Recovery 7,10, 11	TT	Input step 16 to 40 VDC	4		4		4	μs
		Input step 40 to 16 VDC	4		4		4	μs
TURN-ON								
Overshoot ¹	VTonos	$I_{our} = 0$ and $\pm 625 \text{mA}$	4		750		750	mVpk
Delay 1,12	T on Ď	$I_{OUT} = 0$ and ± 625 mA	4		15		15	ms
Load Fault Recovery 7	TR		4		15		15	ms

Notes to Specifications (Triple Output Models)

- 1. Tested at each output.
- 2. Parameter guaranteed by line and load regulation tests.
- 3. At least 25 percent of the total power should be taken from the (+5 volt) main output.
- 4. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- 5. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
- 6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- 7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
- 8. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.
- 9. Load step transition time between 2 and 10 microseconds.
- 10. Recovery time is measured from the initiation of the transient to where V_{out} has returned to within ±1 percent of V_{out} at 50 percent load.
- 11. Input step transition time between 2 and 10 microseconds.
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.

Notes to Specifications (Dual Output Models)

- 1. Tested at each output.
- 2. Parameter guaranteed by line and load regulation tests.
- 3. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- 4. Total power at both outputs.
- 5. When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation.
- 6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- 7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
- An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit
 protection and is the condition of maximum power dissipation.
- 9. Load step transition time between 2 and 10 microseconds.
- 10. Recovery time is measured from the initiation of the transient to where V_{out} has returned to within ±1 percent of V_{out} at 50 percent load.
- 11. Input step transition time between 2 and 10 microseconds.
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
- 13. Above 125°C case temperature, derate output power linearly to 0 at 135°C.

International

AHV28XX (Single Output) Block Diagram

AHV28XX (Dual Output) Block Diagram

AHV28XX (Triple Output) Block Diagram

International

Application Information

Inhibit Function

Connecting the inhibit pin (Pin 2 of single and dual models, pin 8 of triple models) to the input return (pin 10) will cause the converter to shutdown and operate in a low power standby mode. Power consumption in this mode is calculated by multiplying Vin times the input current inhibited, typically 225mW at Vin equal to 28 volts. The input current inhibited is relatively constant with changes in Vin. The open circuit inhibit pin voltage is typically 11.5 volts and can be conveniently driven by an open collector driver. An internal pull-up resistor enables the user to leave this pin floating if the inhibit function is not used in their particular application. All models use identical inhibit internal circuits. Forcing inhibit pin to any voltage between 0 and 6 volts will assure the converter is inhibited. The input current to this pin is 500µA maximum at Vpin2 = to 0 volts. The converter can be turned on by opening Pin 2 or forcing a voltage from 10 to 50 volts. Inhibit pin current from 10 to 50 volts is less than $\pm 50 \mu$ A.

EMI Filter

An optional EMI filter (AFC461) will reduce the input ripple current to levels below the limits imposed by MIL-STD-461 CEO3.

The output voltage of the AHV28XXS can be adjusted upward by connecting a resistor between the Output Adjust (Pin 3) and the Output Common (Pin 4) as shown in Table 1.

lable 1: Output Adjustment Resistor Valu
--

* Resistance (Ohms)	Output Voltage Increase (%)				
Pin 3 to 4	5V	12V	15V		
None	0	0	0		
390 K	+1.0%	+1.6%	+1.7%		
145 K	+2.0%	+3.2%	+3.4%		
63 K	+3.1%	+4.9%	+5.1%		
22 K	+4.1%	+6.5%	+6.8%		
0	+5.0%	+7.9%	+8.3%		

* Output Adjust (Single Output Models Only)

International

Pin Designation

	SIGNAL DESIGNATION					
PIN #	SINGLE OUTPUT	DUAL OUTPUT	TRIPLE OUTPUT			
1	Positive Input	Positive Input	Positive Input			
2	Enable Input	Enable Input	+5VDC Output			
3	Output Adjust*	Positive Output	Output Common			
4	Output Common	Output Common	Neg. Dual Output (12/15 VDC)			
5	Positive Output	Negative Output	Pos. Dual Output (12/15 VDC)			
6	N/C	N/C	N/C			
7	N/C	N/C	Case Ground			
8	Case Ground	Case Ground	Enable Input			
9	N/C	N/C	N/C			
10	Input Common	Input Common	Input Common			

* Output Adjust (Single Output Models Only)

Requirement	MIL-STD-883 Method	No Suffix	ES Suffix	HB Suffix	CH Suffix
Temperature Range		-20°C to +85°C	-55°C to +125°C	-55°C to +125°C	-55°C to +125°C
Element Evaluation					MIL-PRF-38534
Internal Visual	2017	*	Yes	Yes	Yes
Temperature Cycle	1010		Cond B	Cond C	Cond C
Constant Acceleration	2001		500g	Cond A	Cond A
Burn-in	1015	48hrs @ 85°C	48hrs @ 125°C	160hrs @ 125°C	160hrs @ 125°C
Final Electrical	MIL-PRF-38534	25°C	25°C	-55, +25, +125°C	-55, +25, +125°C
(Group A)	& Specification				
Seal, Fine & Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
External Visual	2009	*	Yes	Yes	Yes

Available Screening Levels and Process Variations for AHV28XX Series

* Per Commercial Standards

Available Standard Military Drawing (SMD) Cross Reference

Standardized	Vendor	Vendor
Military Drawing	CAGE	Similar
Pin	Code	Pin
AHV2805SF/CH	52467	5962-9177301
AHV2812SF/CH	52467	5962-9211201
AHV2815SF/CH	52467	5962-9211301
AHV2812DF/CH	52467	5962-9211401
AHV2815DF/CH	52467	5962-9177401
AHV2812TF/CH	52467	5962-9211501
AHV2815TF/CH	52467	5962-9211601

International

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 11/02

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.